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Evaluating Special Event Transit Demand: A
Robust Principal Component Analysis Approach

Pramesh Kumar and Alireza Khani

Abstract—The special events such as games, concerts, state
fairs, etc. attract a large amount of population, which requires
proper planning of transit services to meet the induced de-
mand. Previous studies have proposed methods for estimating
an average daily weekday demand, which have an inherent
disadvantage in estimating the demand for a special event. We
solve an idealized version of this problem i.e., we decompose
a special event affected demand matrix into a regular and an
outlier matrix. We start with detecting the special events in
large scale transit data using the Mahalanobis distance, an outlier
detection method for high dimensional data. Then, a special event
demand is evaluated using state-of-the-art dimensionality reduc-
tion technique known as robust principal component analysis
(RPCA), which is formulated as a convex optimization program.
We show the application of the proposed method using Automatic
Passenger Count (APC) data from Twin Cities, MN, USA. The
methods are general and can be applied to any type of data
related to the flow of passengers available with respect to time. Of
practical interest, the methods are scalable to large-scale transit
systems.

Index Terms—special event, origin-destination (O-D) matrix,
transit data, Automatic Passenger Count (APC), Robust Principal
Component Analysis (RPCA), Mahalanobis distance, outlier
detection

I. INTRODUCTION1

THE National Highway Institute [1] in 1988 defined2

a “special event” as an occurrence that “abnormally3

increases the traffic demand, unlike an accident, construction,4

or maintenance activities, which typically restrict the roadway5

capacity”. Special events can range from big events such as6

Olympics, Super Bowl, Concerts, etc. to small events such as7

a local community festival. These events have now become8

an important aspect of our lives and culture as the United9

States is becoming a leisure-oriented society [2]. Florida10

Department of Transportation Report 2006 categorizes these11

events as planned and unplanned events [3]. The planned12

events have fixed schedule, time, location, and duration,13

e.g., sporting events, concerts, festivals, parades, fireworks,14

conventions, and so on. On the other hand, unplanned events15

such as natural disasters, do not have a fixed schedule and16

duration. The current study focuses on the post-analysis of17

planned events. They attract a large amount of population,18

which requires planning from various aspects. Federal19

Highway Administration (FHA) of the US Department of20

Transportation recommends that a general feasibility study21
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for a planned special event should at least include aspects 22

such as travel forecast, market area analysis, parking demand 23

analysis, travel demand analysis, roadway capacity analysis, 24

and mitigation of impacts. For the induced demand created 25

by special events, transportation agencies have to make 26

arrangements to provide extra parking space, transit service, 27

and better traffic management. Furthermore, special events, 28

if not planned properly, may have disruptive impacts on 29

our transportation infrastructure as current transportation 30

infrastructure and services are not designed for extreme 31

events. For example, high passenger inflows can cause 32

extreme delays on both highway and transit networks. 33

34

During these events, many travelers, in order to avoid 35

congestion on highways and high parking cost, decide to take 36

transit to attend them. In such cases, the goal of a transit 37

agency is to [3]: 38

1) reduce the delay for people attending and not attending 39

the event. 40

2) improve mobility by providing convenient service. 41

3) expose transit system to non-riders 42

4) attract potential new riders 43

To achieve above goals and provide efficient service, a 44

transit agency needs to know the induced demand for these 45

events. One possible way is to conduct passenger surveys 46

during these events to estimate this demand [4]. However, the 47

data collected through surveys is limited, and cannot give a 48

full estimate of this demand. On the other hand, transit Au- 49

tomated Data Collection Systems (ADCS) such as Automatic 50

Passenger Count (APC) system or Automatic Fare Collection 51

(AFC) system can provide a rich source of information about 52

passengers’ travel pattern on a continuous basis [5]. This 53

ITS data can be used to evaluate an origin-destination (O- 54

D) flow matrix using trip chaining of AFC tags ([6], [7]), or 55

using novel optimization techniques employing APC data [8]. 56

Although these methods promise to give a high-quality O-D 57

matrix, the estimated matrix does not give us any information 58

about whether the demand is regular or special event. An 59

ideal way to pose this problem is as follows. Given a demand 60

matrix M ∈ Rm×n, can we decompose it into a regular matrix 61

L ∈ Rm×n and a special event/outlier matrix S ∈ Rm×n?, i.e., 62

63

M = L+ S (1)

The problem seems daunting at first sight, but under certain 64

conditions [9], both L and S can be recovered. We study this 65

decomposition problem and make the following contributions 66

through this article: 67



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

• Describe a procedure to detect special event(s) in a1

large scale time-series transit passenger flow data using2

an outlier detection method that leverages Mahalanobis3

distance [10].4

• Use state-of-the-art dimensionality reduction technique5

known as Robust Principal Component Analysis (RPCA)6

via Principal Component Pursuit (PCP) to solve the7

decomposition problem (1) and estimate a special event8

demand matrix.9

• Show application of these methods to evaluate the Min-10

nesota State Fair demand on a transit route using APC11

data from Twin Cities, MN.12

Although this research uses existing statistical techniques,13

it is a novel application of them in transportation science14

literature. The methods are general and can be applied to15

any type of transit or highway network data available with16

respect to time. The rest of the paper is organized as follows.17

§II describes previous work related to the demand estimation,18

followed by the methodology in §III. Then, a case study about19

the Minnesota State Fair as a special event is presented in20

§IV. Finally, conclusions and directions for future research21

are presented in §V.22

II. RELATED WORK23

The literature review is presented in two subsections. §II-A24

describes the literature related to special events and §II-B25

describes the literature on recent advances in performing26

Robust Principal Component Analysis (RPCA).27

A. Special event literature28

There is limited literature on recurring special event demand29

estimation. The Department of Transportation (DOTs) and30

other transportation agencies have published reports on31

general guidelines to follow when planning a special event32

[11], [2]. These reports discuss how various agencies should33

plan, coordinate, and manage different transportation systems34

for special events. The report is useful to any organization35

that is involved in the planning of a special event. These36

organizations include, but not limited to the Department of37

Transportation (DOTs), law enforcement agencies, media,38

event planners, consulting firms, and the military.39

40

One of the steps in the planning of a special event is41

the demand estimation which can be classified into two42

categories [12]: long-term prediction and short-term prediction43

of demand. The short term prediction is necessary to avoid44

congestion and disruption on highway and transit network45

in real-time. Existing literature has considered short-term46

prediction methods based on neural networks ([13], [14]), time47

series analysis ([15], [16], [17], [12]), support vector machines48

[14], fuzzy logic [18], and Kalman filtering [19]. Although49

these methods are able to capture demand fluctuation in a50

shorter time span, they are not suitable to forecast demand for51

long-term planning. For long term planning, Pereira et al. used52

neural networks to predict the transit passenger arrival using53

social media and smart card data [20] and Ni et al. devel-54

oped a hashtag-based event detection algorithm by combining55

optimization with hybrid loss function, and linear regression 56

[21]. Kuppam used a traditional four-step model and calibrated 57

choice models using a survey to predict the special event 58

demand [4]. However, surveys are associated with inherent 59

disadvantages such as limited size, general reporting errors, 60

and so on which are not able to capture complete demand. 61

One of the pioneer efforts in this regard is by Wong et al. [22]. 62

They used a bi-level optimization with a multi-class traffic 63

assignment at the lower level to evaluate a special event O-D 64

matrix for Macau Grand Prix. With the advent of Intelligent 65

Transit Data Collection Systems, namely, Automatic Fare 66

Collection (AFC), Automatic Passenger Count (APC), and 67

Automatic Vehicle Location (AVL) system, it is now possible 68

to do a detailed analysis of transit passenger travel behavior 69

[23]. We can perform a post-analysis of the demand and 70

evaluate a high-quality OD matrix. Recent application of AFC 71

and AVL data can estimate a stop-level transit O-D matrix 72

using a method known as trip chaining [6], [7]. Trip chaining 73

links various taps of a passenger, made using a smart card, 74

throughout the day and predicts their boarding and alighting 75

locations. The quality of this matrix depends on the number 76

of passengers using a smart card to travel and trip chaining 77

method used to estimate missing boarding/alighting location 78

[7]. The penetration of smart cards is particularly important 79

because visitors attending the special event may not possess 80

a transit smart card. The Automatic Passenger Count (APC) 81

data, on the other hand, provides a full picture by recording 82

the number of boarding and alighting at each stop in the transit 83

network. However, it requires solving an ill-posed system 84

of linear equations to evaluate an O-D matrix. The methods 85

which use boarding and alighting counts obtained from APC 86

data to estimate an O-D matrix are either statistical methods 87

([24], [25]), or optimization methods ([8], [26]). To the best of 88

the authors’ knowledge, there is no study that uses automated 89

transit data to do post-analysis and evaluate a special event OD 90

matrix. This is because the methods proposed in the literature 91

([6], [7], [26], [24], [25], [4]), are able to evaluate a reliable O- 92

D flow matrix, but unable to evaluate how much of that flow 93

belongs to a special event. This naturally raises a question 94

that can we decompose the given matrix into a regular and 95

a special event matrix? The application of RPCA can help 96

in such decomposition. It can be used to evaluate a low- 97

dimensional matrix (regular matrix) along with the separation 98

of special event matrix lying inside this high-dimensional time 99

series data. 100

B. Robust Principal Component Analysis (RPCA) 101

Principal Component Analysis (PCA) is one of the most 102

extensively used statistical technique for dimensionality reduc- 103

tion. The method is used to convert a set of correlated data into 104

uncorrelated vectors using an orthogonal transformation. In l2 105

sense, the problem tries to find a low rank matrix L ∈ Rm×n 106

having rank less than r ∈ N out of the given data matrix 107

M ∈ Rm×n using the following convex optimization program: 108

minimize
L

‖M − L‖

subject to rank(L) ≤ r
(2)
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where ‖M‖ represents the spectral norm of the matrix1

M , which is equal to the largest singular value of M . The2

optimization program (2) can be efficiently solved using3

singular value decomposition (svd) of M [27]. However,4

PCA is extremely sensitive to the outliers present in the data5

matrix and performs poorly when grossly corrupted entries6

are present. Even one corrupted entry can result in a matrix7

L
′

which is significantly different from the true low-rank8

matrix L. To avoid this problem, several approaches have been9

proposed in the literature to robustify PCA, such as influence10

function techniques [28], multivariate trimming [29], random11

sampling [30], and so on. However, these techniques are either12

non-exact or exact with no polynomial-time algorithm to solve13

them. This makes it difficult to use these techniques for large-14

scale data. Recent advances on subspace estimation by rank15

minimization and sparse representation give a good framework16

for separating a low rank matrix from sparse corruptions. For17

Robust PCA via a low-rank and sparse decomposition, various18

formulations are proposed in the literature. This includes19

RPCA via Principal Component Pursuit [9], RPCA via Outlier20

Pursuit [31], RPCA via Iteratively Reweighted Least Squares21

[32], and Bayesian RPCA [33]. We do not describe every22

approach here but refer the interested reader to the review23

article by Bouwmans and Zahzah on their use of RPCA in24

video surveillance [34]. For this research, we use RPCA via25

Principal Component Pursuit [9] because of its suitability to26

the current problem.27

III. METHODOLOGY28

This section presents a methodology for detecting the spe-29

cial events and estimating the demand for it. Before describing30

the methods, we first show the systematic procedure to prepare31

the data on which the proposed methods can suitably be32

applied. The notations used in this article are summarized in33

Appendix A.34

A. Preparation of time series data35

For the application of methods presented in this article,36

we require passenger flow count along a transit route with37

respect to time. Such information can be obtained from transit38

automated data, (e.g., using APC or AFC data). Using the39

methods reviewed in §II, a time-dependent origin-destination40

(O-D) flow matrix can be obtained. We describe the steps41

to aggregate the time series data in a matrix form, required42

for this study. The passenger trips can be aggregated by their43

origin-destination pair or simply by their origin or destination44

only with respect to time in a matrix form. Such a matrix45

will help in extracting the useful statistical measures to detect46

unusual events and then identifying the duration of a special47

event. The methodology presented here is applied to the48

flow matrix of a transit route. However, it is straightforward49

to extend it for a network-level passenger flow matrix by50

including the origin-destination pairs or boarding/alighting51

stops for the whole network.52

53

Let N = {1, 2, ..., |N |} be the set of stops/stations along54

a transit route (For a network-level analysis, include all the55

stops/stations in the network). For a particular day, time can 56

be discretized into h hour intervals, denoting it by the set H = 57

{0, 1, 2, ..., b 24
h c}. Let D be the set of days in our analysis 58

period. We recommend using a large scale time-series data 59

for this purpose. This will help in learning the average pattern 60

of the trips in the given matrix. Also, the methods described 61

in this paper can be scaled to a large amount of data which is 62

one of its advantages. Let T → D×H corresponds to a day- 63

time mapping. This set contains time intervals for different 64

days in our analysis period. Depending upon the availability 65

of the data, there are two ways of aggregating transit trips with 66

respect to time: 67

1) If we have a true time-dependent O-D matrix avail- 68

able, then we can aggregate the trips by their origin- 69

destination pair, which in this case, is the combination of 70

boarding and alighting stops of the transit route denoted 71

by K → N × N . For a fixed t ∈ T , the total number 72

of trips between different origin-destination pairs can be 73

aggregated as a flow vector denoted as m(t) ∈ R|K|. By 74

stacking these aggregated trip vectors m(t) column-wise 75

for each time period in T will create a time-dependent 76

flow matrix M = {mi(t)|i ∈ K, t ∈ T}. 77

2) As mentioned in the §II, a true time-dependent O-D 78

matrix may not be easy to obtain. To avoid problems 79

in obtaining a time-dependent O-D matrix, we can use 80

the commonly available Automatic Passenger Count 81

(APC) data, which provides the number of boarding and 82

alighting on every stop along a transit route. In this case, 83

two different aggregated flow matrices are prepared i.e., 84

a boarding matrix and an alighting matrix because we 85

do not know the actual flow between origin-destination 86

pairs. For a fixed t ∈ T , the number of boarding and 87

alighting at different stops n ∈ N can be aggregated 88

to create a boarding and alighting vector as b(t) ∈ R|N | 89

and a(t) ∈ R|N | respectively. By arranging these vectors 90

along different columns will form a boarding matrix 91

B = {bi(t)|i ∈ N, t ∈ T}, and an alighting matrix 92

A = {aj(t)|j ∈ N, t ∈ T}. Here, bi(t) and ai(t) 93

represents the total number of boarding and alighting 94

at stop i during time period t. 95

In any of the above cases, we will finally prepare a flow 96

matrix represented as M = {mj(t)}, where j ∈ K can either 97

represent an O-D pair K → N×N or a stop location K = N . 98

Table I shows the structure of such a matrix. Before moving 99

further, we make the following assumption: 100

TABLE I: Flow matrix M (rows represents the O-D pairs or
stops and columns represents day-time)

B / T d1-t1 . . . dk-tk . . . d|D|-t|H|
od1/b1/a1
od2/b2/a2
.
.
.
od|K|/b|N|/a|N|

Assumption 1: The flow of passengers can be viewed as 101

a distribution conditioned on time, which follows a periodic 102

trend. The trend is observed according to the time of the day 103
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Fig. 1: Ridership of route 84, 21, and 921 (A line) (The Minnesota State Fair time frame is shaded)

and the day of the week. We assume that the high dimen-1

sional flow matrix M lies in approximately low dimensional2

subspace.3

The intuition behind this assumption is that there exists a4

periodic pattern in the travel pattern (Figure 1) of passengers5

with some noise in it. This travel pattern can be observed6

during peak and non-peak hours. For example, on weekdays,7

some particular stops along a transit route show a high number8

of boarding during morning peak hours and alighting during9

evening peak hours. If there is a special event, the flow10

distribution would deviate from this periodic pattern.11

B. Detection of a special event12

The prepared flow matrix M can be used to detect special13

events. We assume that the trend (Assumption 1) in the number14

of boarding and alighting follows a weekly pattern that can15

be observed (Figure 1) by plotting the number of boarding or16

alighting with respect to time. To capture this periodic pattern,17

let us define a reference set Rt = {m(h)|h ≡ t mod 168, h 6=18

t} for the given flow matrix with 168 hours in a week [35].19

Also, to see how typical flow is at time t, it is recommended20

not to use m(t) as a part of the definition. The reference set21

Rt can be used for calculating the expected boarding/alighting22

vector µm(t) and a covariance matrix Σm(t) as below:23

µm(t) =
1

|Rt|
∑
m∈Rt

m (3)

Σm(t) =
|Rt|
|Rt| − 1

∑
m∈Rt

(
mmT

|Rt|
− µm(t)µm(t)T

)
(4)

(4) defines a non-standard but equivalent formula to com-24

pute the sample covariance matrix. The purpose of this is25

to improve the computational efficiency when computing the26

covariance of a high-dimensional matrix [35].27

The mean µm(t) and Σm(t) calculated above tells us the28

expected ridership and the daily variation in it along with the29

correlation among different dimensions at a particular time30

t ∈ T . If the flow at time t deviates more than a certain31

threshold from the mean vector µm(t), then that time duration 32

can be flagged as an outlier or a special event. This deviation 33

from the mean vector can be calculated as a standard z-score 34

in one dimension. The generalization of this notion for higher 35

dimensions (i.e., how many standard deviations a point is far 36

from the mean of the distribution) is known as Mahalanobis 37

distance [10]. For our case, the Mahalanobis distance for the 38

flow vector m(t) can be calculated as below: 39

M(t) =

√
(m(t)− µm(t))

T
Σm(t)−1 (m(t)− µm(t))

∀t ∈ T
(5)

M(t) fluctuates periodically depending on the day of the 40

week, and time of the day. It is a natural way of detecting 41

outliers in a multivariate normally distributed data, but it has 42

been shown to work well even when the data is not normally 43

distributed [?]. Setting M(t) equals to a constant c defines 44

a multi-dimensional ellipse with centroid at µ. The boundary 45

of this ellipse is a probability density contour defined by the 46

probability distribution of c2, which follows χ2
p distribution 47

with p degrees of freedom (in our case, p = |T |). This 48

Mahalanobis measure can be used to detect a special event 49

by flagging a time period t ∈ T as an outlier event if M(t) 50

is higher than a certain threshold value. The distribution of 51

c2 gives us a probabilistic bound on calculating this threshold 52

value [?]. The probability of M(t)2 ≤ χ2
p(α) is 1− α, where 53

α is the significance level. 54

Prob
[
(m(t)− µm(t))

T
Σm(t)−1 (m(t)− µm(t)) ≤ χ2

p(α)
]

= 1−α
(6)

A similar bound based on the generalization of Chebyshev’s 55

inequality was developed by [?], however, it is a weaker bound 56

than given in (6). For p = |T | and α = 0.01, one can use 57√
χ2
p(α) as a threshold value to detect outliers. Geometrically, 58

the value of
√
χ2
p(α) gives us a boundary, out of which the 59

points can be considered as outliers with high probability. 60

Using this technique, we can determine the duration of a 61
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special event in high dimensional data [36]. We show the1

application of this method in §IV.2

C. Evaluating the special event flow matrix3

In this section, we describe the main focus of this research,4

which is evaluating the demand for a special event. First, we5

formulate the problem as an optimization problem and then6

present the solution algorithm for it.7

8

1) Mathematical formulation: As we assume that the flow9

matrix lies in some low dimensional subspace (Assumption10

1), we aim to recover that low dimensional matrix, which11

can be obtained using Principal Component Analysis (PCA),12

a standard problem in the literature ([37], [38]). Since, PCA13

is not able to perform efficiently in case of gross corruptions,14

in idealized settings, one would like to decompose the matrix15

M into a low rank component (regular demand) and an outlier16

component of grossly corrupted values (special event demand)17

in order to apply PCA. This can be written as follows: Given18

a flow matrix M ∈ Rm×n, we would like to recover low rank19

matrix L ∈ Rm×n and sparse matrix S ∈ Rm×n such that20

M = L+ S (7)

We make an advantage of this decomposition and evaluate a21

special event matrix S, which is a sparse flow matrix having22

outlier entries uniformly distributed throughout the matrix.23

S is sparse as the special events do not happen regularly24

as often in the high dimensional data. Note that we do not25

have any prior information about the column space of L or26

support of S, where it is sparse. The decomposition (7) can be27

achieved by solving the optimization program (8), which tries28

to minimize the rank of the matrix L (to recover a low-rank29

matrix for PCA) along with the number of non-zero entries30

in S (to recover a sparse matrix), known as Robust Principal31

Component Analysis (RPCA).32

minimize
L,S

rank(L) + λ‖S‖0

subject to M = L+ S
(8)

where, ‖S‖0 = limp→0

∑
i,j |Sij |p represents l0 norm of33

matrix S which is the number of non-zero entries in S. The34

optimization program (8) is a non-convex and an NP-hard35

problem which is not easy to solve for a high dimensional ma-36

trix to achieve a global optimum. Recently, a tractable convex37

optimization program to solve (8) is proposed by [39] and [9]38

known as Principal Component Pursuit (PCP). PCP is inspired39

by the recent advancement in the field of compressed sensing40

[40], [41] which tries to obtain the sparsest solution planted41

in an underdetermined system of equations. The program can42

be written as follows:43

minimize
L,S

‖L‖∗ + λ‖S‖1

subject to M = L+ S
(9)

where, ‖L‖∗ =
∑
i σi(L) represents the nuclear norm44

of the matrix L which is sum of singular values of L and45

‖S‖1 =
∑
ij |Sij | represents the l1 norm of S which is sum46

of absolute values of elements of S. In the program (9), l1 47

norm is used as the tightest convex relaxation of l0 norm by 48

minimizing the sum of non-zero entries instead of the number 49

of non-zero entries of a matrix. This convex relaxation has 50

been greatly used in recovering a sparse matrix from an 51

underdetermined system of equations [40]. For example, 52

[42] used this framework to evaluate an O-D matrix on a 53

highway network, [8] used it to evaluate a transit route OD 54

matrix using APC data, and [43] used it to optimally locate 55

sensors on a highway network for O-D estimation. Similarly, 56

the nuclear norm is used as the tightest convex relaxation 57

of rank function. The intuition behind this relaxation is that 58

a matrix L with rank r has exactly r non-zero singular 59

values, which means that the rank is simply the number of 60

non-vanishing singular values. So, minimizing the sum of 61

singular values of a matrix which is its nuclear norm can 62

be understood as the minimization of rank of a matrix [44]. 63

The use of l1 norm is justified when S satisfies a Restricted 64

Isometry Property (RIP) [40]. This condition is satisfied by 65

most of the random matrices and its successful application 66

in estimating O-D matrix can be found in ([43], [8]). Similar 67

RIP condition for nuclear norm can be found in [45]. The 68

parameter λ is a critical parameter, higher value of which 69

detects fewer outliers in S. More details about the choice of 70

λ is given in §IV-C. In this way, we now have a tractable 71

convex optimization program (9) which is far easier to solve 72

than (8). It is shown in [9] that under a few assumptions, we 73

can exactly and efficiently recover L and S even though we 74

do not have any information about the low rank structure of 75

L and location of outliers in matrix S. These assumptions are 76

discussed below: 77

78

Assumption 2: The matrix L should satisfy incoherence 79

conditions (10) which state that the singular vectors of L 80

should be reasonably spread out and the entries in S are 81

located uniformly at random. 82

83

Assumption 2 tries to avoid the extreme cases such as matrix 84

M = e1e
T
1 (e1 is the standard basis), which has 1 at the top 85

left corner and zeros elsewhere. In this case, it is not possible 86

to find L and S unless we know all the entries. Such situations 87

can be avoided by imposing incoherence conditions proposed 88

by [44]. Let us denote the singular value decomposition of L 89

as L = UΣV T =
∑r
i=1 σiuiv

T
i , where r = rank(L), σi is 90

the ith positive singular values, and U and V are the left and 91

right singular matrices with first r columns. Then according 92

to the incoherence conditions specifies that, 93

maxi‖UT ei‖2 ≤
µr

m

maxi‖V T ei‖2 ≤
µr

n

‖UV T ‖∞ ≤
√

µr

mn

(10)

‖X‖∞ is the l∞ norm which is defined as maxi,j |Xij |. The 94

conditions in (10) state that the orthogonal projection onto U 95

or V should be less than the rank multiplied by the parameter 96

µ and divided by the dimension of the matrix. If (10) is 97
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satisfied, then the separation (8) makes sense because the1

singular vectors of L would be spread out or not sparse. In2

our numerical experiment (§IV-C), the value of µ was found3

to be equal to 130.12.4

5

The optimization program (9) assumes that L is exactly6

low rank and S is exactly sparse. However, the flow matrix7

obtained from data such as APC is often corrupted by daily8

noise and it only has an approximate low rank structure. The9

noise can be attributed to the failure of APC systems correctly10

recording the boarding and alighting data or change in the11

regular travel pattern of passengers during the special events.12

For example, some transit riders might avoid their regular trips13

by working from home. In that case, our flow matrix M can14

be considered as the sum of three components:15

M = L+ S +N (11)

where, N ∈ Rm×n represents the noise matrix. Assuming16

that entries in N follows i.i.d. Gaussian distribution and17

‖N‖F ≤ δ for some value of δ > 0, [46] proposed the18

program (12) to exactly recover L and S. The optimization19

program (12) is known as Stable Principal Component Pursuit20

(SPCP) in the literature.21

22

minimize
L,S

‖L‖∗ + λ‖S‖1

subject to ‖M − L− S‖F ≤ δ
(12)

The parameter δ shows the accuracy of matrix M and can23

be adjusted to represent the actual noise in it. Note that there24

is no restriction on the sign of the entries in these matrices.25

Therefore, if regular riders decide to work from home, then N26

would take negative entries representing the reduction in the27

number of regular trips. Another possibility is that sometimes28

there are missing entries in the data. This can happen when29

the automated data collection system fails to record the values.30

Even in such cases, we can recover L and S using (12). For31

those cases, let us assume a set Ω = {(i, j) where Mij is32

observed} and PΩ(X) be the projection of X onto the set of33

observed entries Ω i.e.,34

PΩ(X) =

{
Xij , (i, j) ∈ Ω

0, (i, j) /∈ Ω

and then the optimization program (12) can be modified as35

below:36

minimize
L,S

‖L‖∗ + λ‖S‖1

subject to ‖PΩ(M − L− S)‖F ≤ δ
(13)

The program (13) will decompose the matrix M along37

with the prediction of missing entries. This formulation is38

an extension of the matrix completion problem proposed by39

[44], which is a popular technique to do collaborative filtering.40

41

2) Solution Algorithm: We can treat (9), (12), and (13) as 42

a general convex optimization problem and solve it using an 43

interior point method after formulating it as a semidefinite 44

program. The semidefinite reformulation can be found in 45

[47]. However, the interior point methods perform poorly with 46

high dimensional matrices as they rely on the Hessian of the 47

objective function, resulting in prohibitive computational time 48

even for moderately large size problems (e.g., one with the 49

dimension of the order of 100). In such cases, first order meth- 50

ods are often preferred for large-scale optimization. [48] and 51

[49] proposed various first order optimization algorithms for 52

this problem. We use Accelerated Proximal Gradient (APG) 53

method because of its suitability to the problem structure 54

and faster convergence rate. Instead of solving (12), we can 55

equivalently solve the following dual problem: 56

minimize
L,S

µ(‖L‖∗ + λ‖S‖1) +
1

2
‖M − L− S‖2F (14)

(14) is equivalent to (12) for a given value of µ(δ) [46]. The 57

proximal gradient method naturally applies to such composite 58

functions as this is the sum of a smooth (l2 norm) and non- 59

smooth functions (l1 and nuclear norm). Let us denote X as 60

the ordered pair (L, S) and define f(X) = 1
2‖M − L− S‖

2
F 61

and g(X) = ‖L‖∗ + λ‖S‖1. Then, we can write (14) as: 62

minimize
X

F (X) = f(X) + µg(X) (15)

where, f(X) is smooth and convex with gradient being
Lipshitz continuous having Lipschitz constant Lf = 2 and
g(X) is convex but non-smooth. In proximal gradient method,
we approximate the smooth function f(X) by it’s second order
Taylor series expansion Q(X0, Y ) given the value of X0 (see
17. Clearly, Q(X0, Y ) which is an upper bound to F (X).

Q(X0, Y ) = µg(X0) + 〈∇f(Y ), X0 − Y 〉+ ‖X0 − Y ‖2

(16)

= µg(X0) + ‖X0 − (Y − 1

2
∇f(Y ))‖22 (17)

Definition 1: (Proximal Mapping). For a closed function 63

g(X) and a parameter t ∈ R, the proximal mapping proxh(X) 64

is defined as follows: 65

proxh(X) = argmin
Z

1

2t
‖X − Z‖22 + h(Z) (18)

In proximal gradient descent method, we choose initial 66

iterate X(0), and then repeat 67

Xk = proxtk(Xk−1 − tk∇f(Xk−1)), k = 1, 2, ... (19)

We can see that the next iterate using (19) is obtained by 68

minimizing (17) with tk = 1
Lf

. This method works well in 69

practice if it is easy to evaluate the proximal mapping. In 70

our case, it is found that the proximal mapping for h(X) 71

which is the sum of l1 norm and nuclear norm can be 72

evaluated in a closed form. This closed form expression is 73

known as soft-thresholding operator which is being frequently 74

used in l1 norm minimization arising in compressed sensing 75

problems ([50], [51]). Similar iterative thresholding operator 76

can also be used for nuclear norm minimization [52]. 77
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By defining gradient step update G = Y − 1
Lf
∇f(Y )1

having order pair GL = Y L − 1
2 (Y L + Y S − M) and2

GS = Y S − 1
2 (Y L + Y S −M), we can repeatedly get the3

next iterate Xk+1 using (19).4

5

Definition 2: (Soft-thresholding operator). The minimizer in6

each iteration which is the soft-thresholding operator Sε[x] can7

be defined for x ∈ R, ε > 0 as below:8

Sε[x] =


x− ε, if x > ε

x+ ε, if x < −ε
0, otherwise

This makes it easy to compute the minimizer by just soft-9

thresholding the singular values of L and soft-thresholding the10

individual values in S. We have Gk = (GLk , G
S
k ) and let the11

singular value decomposition (svd) of GLk = UΣV T . Then,12

Lk+1 = USµk
2

(Σ)V T Sk+1 = Sλµk
2

(GSk ) (20)

The natural choice of Yk = Xk, for which the convergence13

rate is no worse than O( 1
k ) [50]. We can accelerate the14

convergence by setting Yk = Xk + tk−1−1
tk

(Lk − Lk−1),15

having a step size satisfying t2k+1 − tk+1 ≤ t2k, which results16

in improvement of convergence rate up to O( 1
k2 ). Thus, for17

ε > 0, when k > k0 +
2‖Xk0−X

opt‖F√
ε

, we can guarantee that18

F (Xk) < F (Xopt)+ε, where k0 is the first iteration and Xopt
19

is the optimal value of X . The overall method given in [48]20

in summarized in Algorithm 1.21

Algorithm 1 PCP using Accelerated Proximal Gradient
method

1: Input Flow matrix M ∈ R|K|×|T |, λ
2: Initialization L−1, L0 ← 0|K|×|T |; S−1, S0 ← 0|K|×|T |;
τ ← 10−5, η ← 0.9 and µ← 0.99‖M‖F , t−1 = t0 ← 1;
µ̄← τµ

3: while not converged do:
4: Y Lk ← Lk+ tk−1−1

tk
(Lk−Lk−1), Y Sk ← Sk+ tk−1−1

tk
(Sk−

Sk−1)
5: GLk ← Y Lk − 1

2 (Y Lk + Y Sk −M), GSk ← Y Sk − 1
2 (Y Lk +

Y Sk −M)
6: (U,Σ, V ) ← svd(GLk ),
7: Lk+1 ← USµk

2
(Σ)V T and Sk+1 ← Sλµk

2

(GSk )

8: tk+1 ←
1+
√

4t2k+1

2 , µk+1 ← max(ηµk, µ̄), k ← k + 1
9: end while

IV. APPLICATION FOR TWIN CITIES TRANSIT DATA22

In this section, we show the application of the proposed23

methodology using APC data from Twin Cities, MN. This data24

was obtained from Metro Transit, which is the primary transit25

agency in Minneapolis/St. Paul region offering a connected26

network of buses, light rail and commuter rail services. The27

Automatic Passenger Count (APC) data used for this research28

contains transit trip information, such as date and time of29

the operation, routeID, stopID, departure and arrival time,30

number of boarding and alighting on each stop, and the31

geographical coordinates of the stops. To get insights into the 32

results obtained after applying our methodology, we select a 33

known event beforehand. However, the methods would work 34

in the presence of both known/unknown events. 35

A. Minnesota State Fair 36

We present a case study of the Minnesota state fair as a 37

special event. Minnesota state fair is the largest state fair in 38

the United States by average daily attendance [53]. In 2016, 39

it was held from 08/25/2016 to 09/05/2016 having 1,943,719 40

attendees from all over the country [53]. The fair is organized 41

in the State Fair Grounds located in Falcon Heights, halfway 42

between the capital of Minnesota, City of St. Paul and its 43

largest city, Minneapolis. To avoid driving on congested 44

highways during the state fair, many people decide to take 45

transit to attend the state fair. Several new state fair buses 46

are arranged to serve the induced demand. There are some 47

regular buses such as route 84, route 21, and route 921 (A 48

Line BRT), which also serve the State Fair Grounds. Figure 49

1 shows the ridership of these three routes from 08/10/2016 50

to 09/20/2016. The duration of the state fair is shown by the 51

shaded region in the figure. Although we can observe a rise 52

in the ridership of all three routes during that period, we do 53

not know how much of that ridership belongs to the state 54

fair. Due to heavy demand, the buses run overcrowded during 55

that period due to which passengers have to stand inside the 56

bus. The quantification of special event demand will help in 57

designing adequate frequency of transit service during that 58

period. 59

60

For this research, we analyze the effect of Minnesota state 61

fair on the demand of route 921 (A line). This line is a bus 62

rapid transit (BRT) service in the Twin Cities region which 63

runs on the Snelling Ave corridor. It has 20 stations, with 64

Snelling & Como Av Station being the closest station to the 65

State Fair Grounds. We use APC data from 08/10/2016 to 66

09/20/2016 for this analysis. The matrix M is prepared using 67

the aggregation procedure described in §III-A. The dimension 68

of the final matrix was R20×336 having 20 transit stops and 69

336 time intervals for different days, which is 8 time intervals 70

per day. 71

B. Analysis of the special event using Mahalanobis Distance 72

We prepared four different matrices for this analysis, 73

each for the number of boarding and alighting in the 74

northbound and southbound direction respectively. After that, 75

corresponding mean and covariance matrices are calculated 76

using (3), and (4) respectively. Finally, the Mahalanobis 77

distance M(t) ∀t ∈ T was calculated using equation (5). 78

To see whether Mahalanobis distance can detect the special 79

event, the results are presented in Figure 2. We plotted M(t) 80

against t to observe the outliers in the time range. Figure 81

2(a) and (b) show M(t) for boarding and alighting matrix in 82

southbound direction. 83

84

The Mahalanobis distance is intuitively the number of the 85

standard deviation a given vector is away from the mean 86
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(a) Boarding in southbound direction

(b) Alighting in southbound direction

(c) Detecting outliers in southbound alighting using 95th percentile outlier detection method

Fig. 2: Outlier event detection. Figure (a) and (b) shows M(t) versus time and (c) shows heatmap of outliers using 95th
percentile outlier detection method (the white color indicates an outlier and blue color indicates a non-outlier) (For interpretation
of colors, please refer to the web version of this article.)

vector. If this value is high, then we expect to see an unusual1

peak during that time period. The time range can be flagged2

as an outlier if M(t) rises above a given threshold. The3

threshold value can be decided by observing a regular pattern4

in the peaks of the plot or using the bound given in (6). In5

our case, the threshold value is equal to
√
χ2
p(0.01) = 16.52,6

which is marked by a red line in Figure 2(a)-(b). By making7

use of this threshold value, the outliers time ranges are shown8

by the shaded portions in these figures.9

10

In 2016, the Minnesota state fair was held from 08/25/201611

to 09/05/2016. In Figure 2(a)-(b), we can observe that the12

M(t) started to rise on 08/26/2016, showing unusual peaks13

during the state fair period and then got back to normal trend14

on 09/06/2016. Although the state fair ended on 09/05/2016, 15

the peaks can still be observed for the next day which is 16

the labor day holiday. The highest peak in both figures 17

was observed on 09/03 which was a weekend during the 18

state fair. We can also see a few other peaks outside the 19

state fair. For example, Figure 2(a) shows a high number of 20

boarding on 09/09 and 09/16 in the southbound direction 21

because of some other event such as a game, concert, etc. 22

This would help a transit agency to look into unknown events. 23

24

To show the benefit of using Mahalanobis distance to detect 25

outlier events, we compare its results with the percentile 26

outlier detection method. This is a generic method which 27

flags a time interval as an outlier event if the number of 28
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boarding/alighting at a stop during that time interval exceeds1

95th percentile value. The results of the 95th percentile outlier2

detection method are shown in Figure 2(c). In this heatmap, the3

outliers and non-outliers are indicated in white and blue color4

respectively. Unlike Mahalanobis distance which computes5

a single measure for each time interval, the 95th percentile6

method shows outliers in two dimensions. We can observe7

that the results computed using this generic method are quite8

sensitive to the noise in data, and it detects outliers that are9

scattered all over the time horizon without giving a clear10

indication of the state fair duration. The problem with this11

method is that it fails to capture the correlation among different12

dimensions to create a trend in the boarding/alighting pattern.13

C. Evaluating outlier flow matrix for Minnesota state fair14

In this section, we discuss the implementation and results15

of our outlier flow matrix estimation using RPCA discussed16

in §III-C. The results are computed for both boarding and17

alighting in each direction but we only present the result for18

boarding in southbound direction to conserve space. To obtain19

the regular matrix L and the special event matrix S, Algorithm20

1 is implemented in Python 2, which is shared as a public21

source code [54]. The algorithm requires two inputs, matrix22

M and λ. [9] suggested that the value of λ = 1√
max(m,n)

,23

(where M ∈ Rm×n) to exactly recover L and S theoretically,24

but it may require further tuning of this parameter to get the25

best results. In our case, λ = 1√
336

= 0.05 did not work26

well. There are other values of λ suggested in the literature.27

For example, [55] suggested λ = 1√
logn

. However, none of28

the value of λ suggested in the literature worked best for the29

current study. So, we performed repeated adjustment of λ in30

order to get the best results by observing the rank of the matrix31

L after every adjustment which can be done by plotting the32

flow from low rank matrix L as shown in Figure 3(b). For33

an appropriate value of λ, we should see a regular pattern in34

the flow. We used λ = 0.09 to solve the program for both35

matrices.36

37

To present the flow in the original and the recovered38

flow matrices, we prepared heatmaps for boarding in the39

southbound direction which is shown in Figure 4. The colors40

show the intensity of flow from various A line stations (on the41

vertical axis) during different time intervals (on the horizontal42

axis). The state fair period is enclosed in a rectangle on43

the horizontal axis. In Figure 4(a), we can observe a high44

number of boarding on the commencing station which is45

Rosedale Transit Center and other stations such as Snelling46

& Como Av and Snelling & University Av station. Snelling47

& University Av station shows a high number of boarding48

because it is a transfer station to the Metro Green line, which49

connects Downtown Minneapolis and Downtown St. Paul50

via the University of Minnesota campus. We also see a high51

number of boarding on Snelling & Como Av during the state52

fair because this is the closest station to State Fair Grounds.53

RPCA seems to perform an excellent job in recovering the54

regular matrix L along with outlier matrix S, heatmaps of55

which are shown in Figure 4(b) and 4(c) respectively. The56

(a) M

(b) L

(c) S

Fig. 3: M, L, and S for Snelling Av and Como Av Station

stations before Snelling & Grand Av show regular boarding 57

as shown by the color intensity in Figure 4(b). The extra 58

demand during the state fair (Figure 4(c)) was generated from 59

Rosedale Transit Center, Snelling & County Rd and Snelling 60

& Hoyt station to go to the state fair. We can also see high 61

number of boarding on Snelling & Como station to alight 62

at all the remaining stations in the southbound direction. To 63

see how RPCA recovered L and S matrices, the number of 64

boarding in southbound direction for Snelling & Como Av 65

station is plotted against the time in Figure 3 for M , L and 66

S. We can see that the extra number of boarding created 67

during state fair at Snelling & Como Station (Figure 3(a)) 68

is successfully recovered from matrix M as S component 69

(Figure 3(c)), leaving behind the regular component (Figure 70

3(b)). 71

72

A similar analysis was done for the alighting matrix 73

in the southbound direction. We found that Snelling & 74

University Av, Snelling & Grand, Snelling & Randolph, 75

and the concluding station, 46th Street Station are the most 76

popular alighting stations for regular passengers. During 77

the state fair, passengers who boarded at Snelling & Como 78

Station seemed to alight at Snelling & University Av, Snelling 79

& Dayton, Snelling & Grand, Snelling & St. Claire, Snelling 80

& Randolph, and 46th Street Station. 81

82

To show the benefit of using RPCA in evaluating the 83

special event demand matrix, we compare its results with the 84

averaging method. We assume that the regular demand matrix 85

Lavg is the historical average of the weekly demand pattern. 86

To be fair in comparison, we excluded the Minnesota State Fair 87

time duration while computing the average demand. Then, the 88

outlier demand Savg is evaluated by subtracting Lavg from 89

M . The results are shown in Figure 4(d). The outlier demand 90
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evaluated using the averaging method shows extra demand1

both during the state fair as well as outside the state fair2

time duration. We also observe negative values for some time3

intervals, that is, the reduction in the number of trips during the4

state fair, which seems unlikely as we expect more demand5

during that duration. Overall, the averaging method suffers6

from limitations such as assumption on the structure of the7

low-rank matrix, which RPCA avoids in its calculation.8

To analyze which stretch of the A line is most affected by9

the state fair, we created a passenger load map for southbound10

direction. The load is calculated by subtracting the cumulative11

sum of alighting from the cumulative sum of boarding. In12

southbound direction (Figure 6), we can observe a heavy13

passenger load between Snelling & Como Av station and14

Snelling & St. Clair station. The load is highest between15

Snelling & Como Av and Snelling & University Av because16

Snelling & University Av station is a transfer point from17

Metro Green line to A line. These observations can help18

Metro Transit to increase the frequency of the bus only along19

a particular stretch instead of the full route. For example,20

considering the capacity of the bus is 40, for a total demand21

of 832 passengers in 3 hour period between Snelling & Como22

Av and Snelling & University Av, the required headway is23

60∗3∗40
832 ≈ 8 min in comparison to current headway of 1024

minutes. Increasing the frequency only along a small stretch25

will save the operational cost to handle the extra demand.26

This is shown in Figure 6, where we can observe that27

increasing the frequency only along a stretch (i.e. Kenneth28

to Como) would help us avoid the reduction in the unused29

capacity of the bus. The shaded area in the figure shows the30

unused capacity of A Line route. This is higher if we increase31

the frequency along the complete route in comparison to a32

particular stretch where more buses are needed. For example,33

in our case, the unused capacity in the first figure is 24 (min)34

* 8 (buses/hrs) * 3 (hrs) * (40 seats) - 103 (seat-hrs) = 28135

seat-hrs in comparison to [12 (min) * 6 (buses/hrs) * 3 (hrs) *36

(40 seats)] + [12 (min) * 8 (buses/hrs) * 3 (hrs) * (40 seats)]37

- 103 (seat-hrs) = 233 seat-hrs in the second figure. Such38

analysis would help transit planners to identify the stretch39

where more buses are needed and evaluating the appropriate40

frequency for that.41

42

V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE43

WORK44

The special events such as games, sports, state fairs, etc.45

can affect the regular transit ridership for which the service46

is designed. This induced demand must be managed properly,47

otherwise, it can have a disruptive impact on the transit48

service. Previous approaches are not applicable in evaluating49

demand during such events. This is for the first time that50

we approach the problem directly by decomposing the given51

demand matrix into a regular and a special event matrix. We52

propose to use Mahalanobis distance to see how atypical53

flow is with respect to time to detect the duration of any54

special event. The method is easy to implement and gives55

us an idea of how severe an event is. After this, RPCA via56

PCP is used to evaluate the special event demand. Due to 57

the unavailability of a full origin-destination matrix, we used 58

the boarding and alighting counts obtained from APC data to 59

evaluate and analyze the demand during Minnesota State Fair. 60

We observed that the Mahalanobis distance did an excellent 61

job in identifying the outlier time range of the Minnesota 62

state fair. We also observed that the outlier demand generated 63

during the state fair can be successfully recovered by applying 64

RPCA. The extra demand (outlier flow) generated during the 65

state fair is evaluated in terms of the number of boarding 66

and alighting at each stop. Furthermore, we found that the 67

evaluated regular matrix could capture the systematic pattern 68

of boarding/alighting of the passengers, whereas the outlier 69

matrix could capture the extra demand generated during the 70

special event. The extra demand can be used to evaluate an 71

adequate frequency of bus route on a particular stretch of the 72

transit route for a future event. 73

74

One of the limitations of this method is that it cannot 75

differentiate the demand for several special events in the 76

region. There is a need for investing this issue further and 77

propose methods to evaluate the demand for multiple special 78

events. Due to the unavailability of complete AFC or survey 79

data, we could not validate the results. Future studies are 80

encouraged to validate the results of the proposed methods. 81

This research can be extended in multiple directions. The idea 82

of detecting outlier event using Mahalanobis distance can be 83

used to measure the resilience of other transportation systems. 84

For example, it can be applied to time-series traffic speed data 85

to measure the resiliency of a highway network. Similarly, 86

RPCA can be applied to evaluate automobile demand during 87

special events. Furthermore, the presented analysis can be 88

extended for a citywide transit network using a network-wide 89

flow matrix. This will help in evaluating the extra demand 90

for other routes during a special event. Not only the special 91

events, the impact of land-use changes from time to time (e.g., 92

the opening of a new supermarket, transit route, and so on) or 93

declining ridership due to weather, which actively affects the 94

origin-destination flow, can also be evaluated. 95
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(a) matrix M (b) matrix L (c) matrix S (d) Savg

Fig. 4: Boarding in southbound direction. Figure (a), (b), and (c) shows actual, regular, and outlier demand respectively
calculated using RPCA method, and (d) shows outlier demand evaluated using averaging method (For interpretation of colors,
please refer to the web version of this article)
.
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Fig. 5: Passenger load in southbound direction

Fig. 6: Unused capacity (shaded area) by increasing the
frequency
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APPENDIX A18

NOTATIONS USED IN THIS ARTICLE19

Variable Definition
N Set of stops/stations along a transit route
D Set of days in our analysis period
H Set of time intervals in a day
T Day-time mapping
K Set of origin-destination pairs
B Boarding matrix
A Alighting matrix
R Reference set used for computing mean

and covariance matrix
µm(t) Mean flow vector for time interval t
Σm(t) Covariance matrix for flows during time t
M(t) Mahalanobis distance for time interval t
M Flow matrix
L Regular (low-rank) flow matrix
S Outlier (sparse) flow matrix
‖M‖ Spectral norm of a matrix M
rank(M) Rank of a matrix M
MT Transpose of a matrix M
C(M) Column space of matrix M
supp(M) Support set of matrix M
‖S‖0 l0 norm of a matrix M , ‖S‖0 = limp→0

∑
i,j |Mij |p

‖L‖∗ nuclear norm of matrix M , ‖M‖∗ =
∑

i σi(M)

σi(M) ith singular value of matrix M , σi(M) =
√
λi(MTM)

λi(M) ith eigen value of matrix M
‖M‖1 l1 norm of matrix M , ‖M‖1 =

∑
ij |Mij |

‖M‖∞ l∞ norm of matrix M , ‖M‖∞ = maxi,j |Mij |
N Noise matrix
Lf Lipshitz constant
〈, 〉 Inner product
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