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Abstract Among the many ways to improve a transit system is a reduction in travel
time as experienced by the passenger. Hence, passenger wait times remain a topic of
interest among transit planners. In this study, the effects of transit vehicle delays on
passenger wait time is investigated, as well as the effects of transfer status, boarding
location, time of day, and rider travel frequency. The data used in this study were
collected using automatic fare collection (AFC) and automatic vehicle location (AVL)
technology. A trip chaining algorithm is used to infer the trajectory of each passenger,
and as a result produce measures of passenger wait time and vehicle delay. An analysis
of an arterial Bus Rapid Transit (aBRT) line in Saint Paul, Minnesota reveals a wait
time model consistent with previous literature, a positive relationship between vehicle
delay and passenger wait time, and an insignificant relationship between transfer status
and passenger wait time. Finally, a simple model relating wait time and vehicle delay
is provided for the purpose of transit planning and wait time estimation.

Keywords Automatic Fare Collection (AFC) · General Feed Transit Specification
(GTFS) ·Wait time · Transit · Trip Chaining Algorithm · Automatic Passenger Count
(APC)

1 Introduction

In a commuter landscape dominated by single-occupant vehicles (SOVs), public
transit agencies wrestle with fundamental differences that make transit less attractive
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than driving alone. Among those differences are the often longer overall travel times
faced by transit riders as compared to SOV commuters. While overall travel time is
a significant factor in the attractiveness and utility of public transit, the time spent
waiting at a public transit station is perceived as the most onerous component of
overall travel time [1]. Empirical studies have found that passengers always perceive
wait times as longer than actually experienced [1]. This is reflected in transit route
choice models where the wait time coefficient is assigned a value more than twice that
of the in-vehicle time coefficient [2,3]. Longer wait times reduce the utility of using
public transit for travel and hence the modal share. For this reason, transit planners
are greatly interested in measuring and minimizing passenger wait time.

This study contributes to the existing literature by usingAutomatic Fare Collection
(AFC) data in conjunction with Automatic Vehicle Location (AVL) data to model
passenger wait times. As transit agencies shift towards automated data collection, an
ever-expanding body of data will become available for analysis. This study details the
process of collecting, organizing, and analyzing data to measure passenger wait times.
To illustrate this process, passenger wait times were measured and analyzed for the
A-Line Arterial Bus Rapid Transit (aBRT) in Saint Paul, Minnesota. The implications
of this study are presented along with a discussion of future research.

2 Background

Early studies on passenger wait time estimation assumed that passengers arrive ran-
domly at transit stops and behave independently of scheduled bus times [4–7]. Under
this assumption, the instantaneous rate of passenger arrival is uniform between bus
arrivals, resulting in an expected wait time equal to half of the headway. Further, this
assumption produces the formula to account for variability in headway,

E[W] =
H
2
(1 + C2

v ) (1)

where, Cv is the coefficient of variation in headway, and H is calculated as the mean
scheduled headway [8,9]. The assumption that passengers arrive randomly was later
found to be invalid [10,11]. Joliffe and Hutchinson challenged the random arrival
assumption by considering passengers to be of three behavior types: arriving at a
bus station at the same time as a bus by coincidence, intentionally arriving near to a
scheduled bus time, or arriving at a bus station randomly [10]. They surveyed ten bus
stations for an hour every day for eight days and found that the proportion of passengers
who arrive at the optimal time increaseswith headway. Bowman andTurnquist adapted
the previous passenger characterization and found a similar relationship between
headway and passenger wait time [11]. They extended the study by including the
effect of service reliability and found that passenger wait time was more sensitive to
service reliability than to service frequency.

More recently, wait time studies have expanded to regression analysis using char-
acteristics such as gender, ethnicity, location, schedule reliability, and traffic period
[15]. Others have used Monte Carlo simulation [16] and probabilistic mixture mod-
elling [17]. In the latter study, passenger wait time is modeled using data from the
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Greater Copenhagen Area, including several different train systems, and headways
ranging from 2 to 60 minutes. Using AFC data, the study assumes passengers fall
in one of two behavior groups: arriving randomly, or trying to minimize wait time
by coordinating their arrival with the scheduled train departure time. These behavior
groups are modeled using a Uniform and a beta distribution, respectively. Using a
mixture model of the two distributions, the study finds that headway is a significant
factor in determining the proportion of passengers who arrive randomly. Furthermore,
the proportion of passengers who arrive randomly increases as headway decreases.
While these results have been shown using AFC data, none of the studies reviewed
measure passenger wait time using AVL data. This study contributes to the existing
literature by synthesizing AFC and AVL data to analyze vehicle delays and passenger
wait times. Ultimately, a generalized linear model will be estimated for passenger wait
times on the A Line aBRT in Saint Paul, Minnesota.

3 Methodology

3.1 Data Preparation

The first step inmeasuring each passenger’s wait time ismatching their fare transaction
to a bus stop. An AFC data set provides geographic coordinates of each transaction,
which will have occurred at a bus stop prior to boarding. Often times on a bus route,
a north bound station will sit across the street from a south bound station, or an
east bound across from a west bound station. The geographic coordinates in an AFC
dataset will likely not be accurate enough to indicate which direction a passenger
is travelling. For this reason, a pair of transactions, representing an origin and des-
tination, is used to determine which direction each passenger is travelling on a bus
route. Once the direction of travel is known for each passenger, the nearest station to
a given passenger’s fare transaction that goes in the correct direction is identified as
their boarding station. Once the boarding station is identified, GTFS and AVL data
are used to match each passenger to the bus they most likely boarded. For high fre-
quency routes, matching a passenger’s transaction time to a bus purely based on bus
arrival time may result in incorrect matching. To avoid this problem, a probabilistic
trip chaining algorithm is used to infer each passenger’s boarding time and transfer
status [18]. The algorithm creates a restricted shortest path problem by considering
several trajectories of a passenger with varying boarding location, trip ID, and alight-
ing location. The scheduled boarding and alighting time are assigned based on the
trajectory with the highest likelihood value. Finally, the actual arrival time of the
bus is inferred by matching the trip ID between GTFS and AVL data, and transfer
detection is conducted using previously developed methodology [19]. The matching
procedure is described in Figure 1. In order to detect transfers between buses, it is
necessary to makes a few assumptions about transfer behavior. First, Metro Transit,
the main transit agency in the Twin Cities, defines the transfer period as 2.5 hours
after a passengerâs first transaction. In other words, once a passenger has paid for a
fare, they may transfer freely between buses with no additional charge. Because 2.5
hours is a relatively long period, a shorter window is used to more accurately capture
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transfer behavior. Only transactions within 90 minutes of an initial transaction are
considered as possible transfers, and the trip chaining algorithm is used to determine
whether or not an actual transfer of transit routes has taken place.

3.2 Modelling Wait Time

Previous studies have used the Gamma [20], Beta [17], Lognormal [20], Uniform
[4–7], and Johnson SB [12] distributions to model passenger wait time. With this
established list of candidate distributions, a series of tests to identify the best fitting
distribution is conducted using the R package fitditrplus [21]. The first is a one-sample
Kolmogorov-Smirnov test to eliminate any distributions that do not fit the data at the
0.05 significance level. Next, the remaining distributions are compared using the
Akaike Information Criteria (AIC), defined as 2k-2ln(L), where k denotes the number
of parameters to be estimated and L denotes the maximum value of the likelihood
function. Finally, the distribution with the lowest AIC value is used to model wait
time. As shown in the results section (Table 2), wait time is best approximated by the
Gamma distribution, where k and θ are the shape and scale parameters, respectively
[5].

f (x; k, θ) =
1

Γ(k)θk
xk−1e−

x
θ (2)

k =
mean2

variance
, θ =

variance
mean

(3)

Next, a Generalized Linear Model (GLM) is constructed to relate passenger wait
time with bus reliability and several other factors. Bus reliability is represented as the
difference between a given actual departure time and the scheduled departure time,
and is recorded in our dataset under the name âvehicle delayâ. Given this formulation,
it is possible for vehicle delay to be negative. This would indicate that a bus departed
early from a station, and thus the actual departure time was earlier than the scheduled
departure time.

To construct the GLM, let wi be the wait time experienced by passenger i, and
xi j be the observed value of the explanatory variable j for passenger i. For the
proposed model, the explanatory variables are given in Table 2. These variables were
selected for analysis due to their ease of availability, practicality for transit planners,
and appearance in previous literature [15]. Before the final GLM is constructed,
each variable will be tested individually for a significant relationship with wait time.
Previous studies have used an Ordinary Least Squares model (OLS) to relate the
wait time with explanatory variables (Equation 4), where β is the vector of estimable
parameters.

wi =
∑
j

βj xi j + εi (4)

The OLS estimation assumes the error, εi to be independently and Normally
distributed with zero mean and constant variance, i.e. εi ∼ Norm(0, σ2). However,
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the Normality assumption may not always hold. To test whether this assumption is
appropriate for our data, it is necessary to construct an OLS model and observe the
Normality of residuals using the Kolmogorov-Smirnov goodness of fit test:

H0 : The residuals follow the Normal distribution
Ha : The residuals do not follow the Normal distribution

In the application of this methodology, the computed test statistic is 0.5134 with a
p-value of 2.2e-16, suggesting a rejection of the null hypothesis. Instead, the Gamma
distribution better approximates the residuals, justifying the use of a GLM as opposed
to an OLS. The Gamma regression specifies the expected value of the wait time as
a function of the explanatory variables by using a log-linear function (Equation 5).
Moreover, the log transformation provides stability to the variance of the distribution
and accommodates negative values of delay.

log(E[wj]) =
∑
j

βj xi j (5)

As the link function (log) of the transformation is monotonic and differentiable,
Equation 5 satisfies the conditions of a generalized linear model. Finally, the iterative
least squares estimation (IWLS) algorithm in R is used to estimate the coefficients of
the explanatory variables.

4 aBRT in Saint Paul, Minnesota

This study uses AFC and AVL data from the A Line in Saint Paul, Minnesota, which
is an aBRT line completed on June 11, 2016. An aBRT line is distinct from other bus
lines in that it is designed to reduce dwell time at stations and minimize vehicle delays.
The buses have low floors, wide aisles, the ability to board from both doors, and fewer
stops per mile than a typical bus route (Figure 1). The most important feature to our
study, however, is the presence of pay stations at the bus stops. Instead of paying a
bus fare while boarding the bus, all transactions are conducted at the bus stop prior
to boarding. The pay stations have card readers, where a passenger may tap their fare
card, called a Go-To card. This is crucial to the study, as it allows us to determine the
time between when a passenger pays at a station, and when their bus arrives. Using
automatically collected data requires the assumption that (1) passengers will tap their
Go-To card as soon as they arrive at a station, and (2) passengers board the first A
Line bus that arrives at their stop. These assumptions are reasonable, given that A
Line buses drive the same route and make the same number of stops. For most of the
day, the A Line has a 10 minute headway. In the early morning and the late evening,
however, the A Line progresses from 10 minute to 15 and 20 minute headways. In
order to only use data from the 10 minute headway period, all transactions used for
analysis occurred between 5:45 am and 8:20 pm on September 1st through September
10th of 2016. Vehicle delay is calculated as the difference between the actual and
scheduled bus departure time from a stop, and passenger wait time is calculated as the
difference between the actual bus departure and the transaction time. After calculating
vehicle delay and passenger wait times for the entire data set (n = 2,172), some of the
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observations must be omitted from the study. First, 3.6% of the vehicle delay values
are greater than 10 minutes. While long vehicle delays are possible, vehicle delays
over the length of a single headway (10 minutes) are highly unlikely, and would cause
problems for our trip-chaining algorithm described in the previous section. As a result,
we discarded these entries. Second, 1.3% of our passenger wait time values are less
than zero, implying that a transaction occurred after a bus departed. Ultimately, these
entries have been discarded because they conflict with the assumption that passengers
pay at the station before boarding a bus, and the number of entries is relatively small.

5 Application Results

After excluding negative wait time values from the dataset, the distributions for
passenger wait times and vehicle delays are presented in Figures 3 and 4, respectively.
Vehicle delays appear to follow the expected behavior - values are largely clustered
around zero minutes, and rapidly taper towards the maximum vehicle delay of 9.85
minutes. It should be noted that negative values are acceptable for vehicle delay, as
the bus may arrive earlier than the scheduled departure time. Based on the shape of
the wait time distribution (Figure 3), several candidate distributions are proposed:
Gamma, Exponential, Lognormal, Normal, and Uniform. Table 2 shows the results
from the Kolmogorov-Smirnov and AIC tests. At the 0.05 significance level, none
of the candidate distributions can be eliminated. The Gamma distribution has the
smallest AIC value, and is therefore chosen as the best fitting distribution. The Gamma
distribution is parameterized with scale and shape, and yields the fit shown in Figure
3.

Before constructing a GLM for wait time, it is necessary to test the significance of
each explanatory variables when modelled in isolation. Table 3 shows the results for
each variable from the generalized linear model. First, we observe a highly significant
positive relationship between passenger wait time and vehicle delay. This is expected
- the longer the bus is delayed after the scheduled arrival, the longer each passenger is
expected to wait. While this result exists in previous literature, the exact relationship
between passengerwait time and vehicle delay is contested. This is discussed at the end
of the section. Moving to the next model, we see some significant differences in wait
times between stations. As compared to the reference station, 46th Street Station, three
stations do not show significantly longer waits, while the model reveals significantly
longer wait times at Snelling&Grand and Snelling&University. Interestingly, the two
stations with the shortest expected wait times, 46th Street and Rosedale Transit Center
Station, are the endpoints of the A Line. A potential reason for this phenomenon is
examined later in the section. While we see significant differences in wait times at
different stations, this variable will not be included in the final GLM. This decision is
made in an effort to produce a transferable final model. In other words, the objective
of this study is to produce results that are easily applied to other transit systems,
and including specific stations from this application would conflict with that goal. In
place of the station variable, a new variable is created, called "transitway access". On
the A Line route, the Snelling & University station is the most heavily used station,
likely because it connects to the Green Line light rail. Thus, the new variable aims
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to capture this distinction with a binary variable, equalling one of a given passenger
boarded at Snelling & University, and zero otherwise. The next two models, transfer
status and rider frequency, show no significant relationship with wait time. Thus,
neither will be included in the final model. Lastly, wait time modelled by time of day
produces significant coefficients. As compared to the reference time of day, non-peak
hours, passenger’s experienced significantly longer wait times during the morning
rush period. Due to this significance, Time of Day will be included in the final model.

Based on the results from the individual models, the final GLM is constructed and
presented in Table 4. Similar to the previous models, the residuals are fairly skewed,
so a GLM with log transformation is used to better approximate the data. While time
of day was a highly significant predictor of wait time when modelled in isolation, the
variable loses some of its significance when delay is included in the model. This could
imply some interaction between the two variables. For example, vehicle delays may
occur disproportionately during certain times of day. The transitway access variable is
also highly significant, indicating that passenger wait a significantly shorter duration
at the Snelling & University station than at any other station. Ultimately, vehicle delay
remains a strong predictor of passenger wait time, and should be included in any
passenger wait time model. Practically, it can be useful to model passenger wait time
as a function of a small number of variables.With the intention of creating a simplified
version of the previous GLM, wait time (W) is modeled exclusively by vehicle delay
(D), yielding Equation (6).

log(E[W]) = 1.279 + 0.16 ∗ D (6)

In the absence of a bus vehicle delay, this model finds an expected wait time of 3.59
minutes. Using the average A Line vehicle delay, 1.84 minutes, we find an expected
passenger wait time of 4.82 minutes. By eliminating vehicle delays on the A Line
route, we find that the average passenger wait time could potentially be reduced by
over one minute. As reviewed, previous literature derives the average passenger wait
time using headway, a coefficient for variation in headway, and the assumption that
passengers arrive randomly [9]. Applying Equation 1 to the data from this study, the
expected passenger wait time is found to be 5.24 minutes. While the difference is not
large, this result indicates that Equation 1 slightly overestimates expected passenger
wait time in the context of this study.

While the variables for Station and Rider Frequency were not included in the
final model, they merit further consideration. First, it was observed that passengers
boarding at the end point stations on the A Line recorded the shortest average wait
times. Figure 5 lends some insight into this observation. The endpoints, 46th Street
Station and Rosedale Transit Center, have a significantly shorter average delay when
compared to the other stations. It is worth noting this trend, as a wait time model may
best be applied to clusters of stations that share similar positions on a route. However,
the endpoint stations may also experience some inaccuracies in the AVL data. For
example, the A Line may dwell at 46th Street Station for a long period of time until
the route is scheduled to begin (layover time), which would undermine the vehicle
delay calculation. Future applications of wait time models should be conscious of
this phenomenon. Second, the Rider Frequency variable is a fairly crude measure,



8 Alex Webb1 et al.

and may not be showing significance for a variety of reasons. The calculation for
Rider Frequency is provided in Table 1, and may not be capturing a very accurate
measure of how often each passenger rides the A Line. For example, One of the most
frequent riders in the data set only rode the A Line once in the week that this study was
conducted. During that single trip, they waited 15 minutes to board the bus. So, this
passenger is recorded as a very frequent rider with an average wait time of around 15
minutes. This may be an issue, as the passenger is generally a frequent rider, but was
not a frequent rider during the week of the study. This particular outlier illustrates a
potential issue with the measure. Future research should aim to produce a more robust
representation of rider frequency.

6 Conclusions

This study provides a framework for using automatically collected data to measure
passenger wait times, and for making statistical inferences about the data. This frame-
work was applied to the A Line aBRT route in Saint Paul, Minnesota, revealing the
distribution of passenger wait times along with the relationship between wait time and
several explanatory variables. The demonstrated steps required to use AFC, AVL, and
GTFS data in this study should be widely applicable to transit planners interested in
measuring wait time with real-time information. For the A Line aBRT, the passenger
wait time distribution was found to be best approximated by the Gamma distribution,
which is generally consistent with the literature reviewed. While average passenger
wait time will differ between bus routes and between transit systems, the methodology
developed can be adapted to generate a model for passenger wait time, and doing so
would provide an interesting comparison to the results found in this study. Among the
results, each explanatory variable was used to model passenger wait time in isolation,
and only the station, time of day, and vehicle delay variables were found to be sig-
nificant. Upon analyzing the significant differences in passenger wait times between
stations, it was found that average vehicle delay varied significantly between stations.
Further, it was found that the end stations had significantly shorter delays than the
mid-route stations. This finding highlights the necessity to understand transit systems
within context. While transfer status was found to be insignificant, transit planners are
concerned with the burdensome nature of transferring, and therefore the observed ef-
fect of transfer status on passenger wait timemaywarrant further examination. Finally,
research should be directed towards testing the assumption that passengers pay their
fare as soon as they arrive at a station. Regardless of the outcome, the methodology
provided in this study could be modified to accommodate the observed behavior.
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Fig. 1 A Line Route

AFC DATA: Identify time and location of two transac-
tions within 90 minutes of each other for each passenger

GTFS DATA: Determine set of possible trips taken between
transactions, identify most likely boarding time and location

AVL DATA: Match selected trip ID from GTFS data with AVL data

Calculate: Wait time = (AVL bus arrival time) - (initial transaction time)

Fig. 2 Data Matching Procedure
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Fig. 3 Passenger Wait Time

Fig. 4 Vehicle Delay
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Fig. 5 Vehicle Delay by Station (boxes represent the first quartile, median, and third quartile. ’+’ represents
outliers).

Table 1 Description of Variables

Variable Description
Wait time Calculated as: (bus arrival time) - (passenger transaction time)
Vehicle delay The difference between actual bus arrival and scheduled bus arrival time
Transfer Takes the value of 1 if the current transaction is a transfer to the A Line, 0 otherwise.
ROS Takes the value of 1 if the passenger boarded at the Rosedale Transit Center, 0

otherwise.
SNU Takes the value of 1 if the passenger boarded at Snelling & University, 0 otherwise.
SNG Takes the value of 1 if the passenger boarded at Snelling & Grand, 0 otherwise.
SNL Takes the value of 1 if the passenger boarded at Snelling & Larpenteur, 0 otherwise.
FK Takes the value of 1 if the passenger boarded at Ford & Kenneth, 0 otherwise.
AM Takes the value of 1 if the transaction time is within 6:00 AM - 9:30 AM, 0 otherwise.
MD Takes the value of 1 if the transaction time is within 9:30 AM - 3:00 PM, 0 otherwise.
PM Takes the value of 1 if the transaction time is within 3:00 PM - 6:30 PM, 0 otherwise.
RideFreq For each passenger, the number of transactions made at an A Line station between

August 1st and September 30th, 2016.
Transitway
access

takes the value of 1 if passenger boarded at the major transfer station (Snelling &
University), 0 otherwise.

Table 2 Goodness-of-Fit Results

Gamma Exponential Lognormal Normal Uniform
K-S (Test stat.) 0.0473 0.347 0.0898 0.648 0.223
AIC 9573.465 N/A 9890.027 9757.072 10514.85
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Table 3 Single Variable Wait Time Models

Estimate Std. Error t value Pr(> |t |) McFadden
R2

Model 1 (Intercept) 1.279 0.0124 102.62 <2e-16 *** 0.354
delay 0.160 0.00439 36.41 <2e-16 ***

Model 2 (Intercept) 1.470 0.0279 52.629 2e-16 *** 0.045
FK 0.324 0.105 3.091 0.00202 **
ROS -0.0836 0.0564 -1.482 0.139
SNG 0.386 0.0412 9.359 2e-16 ***
SNL 0.107 0.0505 2.118 0.0343 *
SNU 0.1793 0.0323 5.547 3.29e-08 ***

Model 3 (Intercept) 1.638 0.0133 122.929 <2e-16 *** 01.37e-05
Transfer -0.00345 0.0329 -0.105 0.917

Model 4 (Intercept) 1.641 0.0169 97.342 2e-16 *** 5.48e-05
RideFreq -0.000127 0.000369 -0.344 0.731

Model 5 (Intercept) 1.673 0.0166 101.070 2e-16 *** 0.014
AM -0.204 0.0348 -5.867 5.19e-09 ***
PM -0.0198 0.0269 -0.739 0.46

Table 4 Multivariable GLM

Estimate Std. Error t value Pr(> |t |)
(Intercept) 1.329 0.0182 73.113 < 2e-16 ***
delay 0.161 0.00442 36.512 < 2e-16 ***
AM -0.0483 0.0279 -1.732 0.0834 .
PM -0.00693 0.0212 -0.326 0.744
transitway access -0.084174 0.019365 -4.347 1.45e-05 ***

Significance codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1
(Dispersion parameter for Gamma family taken to be 0.1802411)
Null deviance: 730.33 on 1992 degrees of freedom
Residual deviance: 467.84 on 1988 degrees of freedom
AIC: 8653.8
McFadden R2: 0.36
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