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Abstract

Development of an origin-destination demand matrix is crucial for transit planning. The
development process is facilitated by automated transit smart card data, making it possible
to mine boarding and alighting patterns on an individual basis. This research proposes
a novel trip chaining method which uses Automatic Fare Collection (AFC) and General
Transit Feed Specifications (GTFS) data to infer the most likely trajectory of individual
transit passengers. The method relaxes the assumptions on various parameters used in the
existing trip chaining algorithms such as transfer walking distance threshold, buffer distance
for selecting the boarding location, time window for selecting the vehicle trip, etc. The
method also resolves issues related to errors in GPS location recorded by AFC systems
or selection of incorrect sub-route from GTFS data. The proposed trip chaining method
generates a set of candidate trajectories for each AFC tag to reach the next tag, calculates
the probability of each trajectory, and selects the most likely trajectory to infer the boarding
and alighting stops. The method is applied to transit data from the Twin Cities, MN, which
has an open transit system where passengers tap smart cards only once when boarding (or
when alighting on pay-exit buses). Based on the consecutive tags of the passenger, the
proposed algorithm is also modified for pay-exit cases. The method is compared to previous
methods developed by the researchers and shows improvement in the number of inferred
cases. Finally, results are visualized to understand the route ridership and geographical
pattern of trips.

Keywords:  Automatic Fare Collection (AFC), General Feed Transit Specification (GTFS),
Transit Origin-Destination (O-D) Matrix, Transit, Trip Chaining Algorithm, Smart Card
Data
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1. Introduction

For better service and planning, transit agencies need to understand passengers’ travel
behavior. For this purpose, they conduct on-board surveys which collect data about passen-
gers’ boarding and alighting location, purpose of travel, etc., and then use expansion factors
to expand the survey data for the whole population. There are various limitations associated
with these surveys, such as cost, small sample size, bias, and other general reporting errors
(Attanucci, J. & Wilson|[1981]). Conversely, automated data collection systems (ADCS),
which are designed for administrative purposes such as revenue management, provide a rich
source of information about passengers travel pattern on an individual basis. The automated
data offers several advantages (Wang et al.2011)) over traditional surveys by:

1. providing a link to passenger’s trips over a longer period of time

2. providing information about the share of different transit commuters (e.g. students,
workers, etc.)

3. storing the information in SQL database systems and using it efficiently

4. providing various research opportunities for analyzing passengers’ travel pattern

In recent years, there has been growing interest in using automated smart card data
for travel behavior research in transit systems. Automatic Fare Collection (AFC) systems
collect information about on-board transaction of passengers such as boarding stop/station,
date and time of the transaction, route information, etc. The data is useful not only for
improving day-to-day transit operations but also for long-term strategic planning of transit
network (Pelletier et al.2011)). It has been used for a variety of purposes such as:

1. stop-level origin-destination matrix estimation (Barry et al.|2007, [Trépanier et al.[|2007,
[Zhao et al2007, [Alfred Chu and Chapleaul[2008| Barry et al[2009, [Chu and Chapleau
2010, Wang et al|[2011, [Nassir et al. 2011, Munizaga and Palmal[2012, |Gordon et al.|
2013).

2. trip purpose inference (Lee and Hickman| 2014, Kusakabe and Asakura 2014, Alsger]
2018)

3. route choice modeling (Kim et al.|2017, Zhao et al.|2017)

4. passenger trip prediction (Zhao et al.|2018))

5. mining spatial and temporal clusters of similar travel patterns (Ma et al.2013| Briand|
et al] 2017, [Khani 2018)
6. passenger waiting time estimation (Ingvardson et al.[2018))

This study focuses on one of the important input for analyzing a public transit sys-
tem, which is the flow of passengers between different stations/stops known as an origin-
destination (O-D) matrix. O-D estimation using automated smart card data has attracted
attention of many researchers over the last decade (Barry et al.[2007] Trépanier et al. 2007,
Zhao et al.|[2007, [Alfred Chu and Chapleaul 2008, [Farzin| 2008, Barry et al.|2009] [Chu and
|Chapleau| 2010, Nassir et al.|[2011, Wang et al.|[2011, Ma et al. 2012, [Munizaga and Palma]
2012, |(Gordon et al.|2013, He and Trépanier|[2015). The estimation requires a sequence of
trips made by the passenger throughout the day recorded using AFC system. But the in-
formation available with this data is limited and the full sequence of trips is usually not
available. This is because of the type of the fare collection system (open or closed) employed
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by a transit agency. In closed transit systems (Alsger et al.|2016), origin and destination
is known for the trips as passengers tap their card both when boarding as well as when
alighting, whereas in open transit systems (Barry et al. [2007, Trépanier et al|2007, |Zhao
et al.[[2007, Alfred Chu and Chapleau 2008| [Barry et al.| 2009, |Chu and Chapleaul 2010,
Nassir et al.| 2011, Wang et al. [2011, Munizaga and Palma 2012, Gordon et al. 2013), the
boarding of passengers is usually known, and the alighting is unknown as passengers only
tap their card when boarding a transit vehicle. Passengers’ alighting location can then be
inferred based on the next boarding location using a trip chaining algorithm (Barry et al.
2007, Trépanier et al.|[2007, |Zhao et al.|[2007, |Alfred Chu and Chapleau| 2008, Farzin|[2008|
Barry et al.| 2009, Chu and Chapleau 2010|, Nassir et al.|2011], [Wang et al|2011, Munizaga
and Palmal 2012, Ma et al.|2012] |Gordon et al|2013], [He and Trépanier| 2015, Kumar et al.
2018).

Trip chaining algorithms developed so far use assumptions on various parameters, e.g.
buffer radius to find the closest stop to the boarding location, walking distance threshold
after alighting to board the next route, time threshold to distinguish between boarding and
transfer, etc. These parameters can vary among different transit systems and can affect the
trip chaining results and therefore the origin-destination matrix. The current research tries
to relax the assumptions related to these parameters by proposing a robust trip chaining
algorithm.

The algorithm is applied to the AFC data from Twin Cities, Minnesota which has an open
transit system (Nassir et al[2011]), where transit passengers use (tap) their card only once.
The system is more complex than other systems described in previous research because some-
times passengers tap their card while entering the bus (when they board a “regular route”
or “non pay-exit” bus) or sometimes while exiting the bus (when they alight a “pay-exit”
bus). The pay exit buses are generally outbound trips from central areas such as Downtown
Minneapolis or the University of Minnesota campus to sub-urban areas. The existing trip
chaining algorithm changes significantly when the combination of such tags are observed for
a card number. The proposed method creates a set of possible trips for a given card tag,
calculates the probability that the passenger has used each trip, and then infers the boarding
and alighting on the basis of the most likely trip.

The rest of the paper is organized as follows: Section 2 presents a summary of related
work done in this research area, followed by motivation behind this research in Section 3.
Then, the proposed trip chaining algorithm is described in Section 4, which is followed by
the analysis of the results in Section 5. Finally, conclusions and recommendations for future
research are provided in Section 6.

2. Related Work

As most of the fare collection systems record passengers’ boarding information only,
alighting information must be inferred using the sequence of taps (or tags) made by the
passenger throughout the day. Thus, a significant amount of research has been done to
develop algorithms to determine the alighting location (Li et al.[|2018). Navick and Furth
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2002 used location-stamped fare box data of Los Angeles area bus routes to determine
alighting location using an assumption that boarding pattern of current trip and alighting
pattern of opposite trip are symmetric for the entire day which means passengers board the
bus again from the same stop where they alighted during the previous trip. Building on that
assumption, [Zhao et al.|2007, [Barry et al. 2007, Barry et al.|[2009, and |Gordon et al.|2013
developed a method of trip chaining for origin and destination inference with the following
assumptions:

1. passengers return to the same location to board the bus where they alighted during
the previous trip,

2. no private mode of transportation is used between trips,

3. passengers do not walk a long (more than a certain threshold) distance to board a bus
or train,

4. passengers end their last trip at the same location where they started their journey of
the day.

Based on the above assumptions, Trépanier et al. 2007 proposed a model which infers
alighting stops by minimizing the distance between the alighting stop of the current trip and
boarding of the next trip. They applied their method on AFC data from Quebec, Canada
and inferred 66% of the trips. Similarly, [Wang et al.[2011|proposed a method which combines
Automatic Vehicle Location (AVL) data with AFC data from London to infer the origin and
destination of different trips and validated the results using bus passenger origin and desti-
nation survey (BODS) data. Then [Seaborn et al.|[2009| stated some rules for trip chaining
such as maximum acceptable transfer time of 20 minutes for underground subway-to-bus, 35
minutes for bus-to-underground subway, and 45 minutes for bus to bus trips. Building on
the work of Seaborn et al.|2009 and |Wang et al.[2011]in estimating origin-destination matrix
using London smart card (Oyster) data and iBus vehicle location data, Gordon et al.|[2013
specified the importance of the return trips, bus wait time, repeated service and circuity in
trips. The researchers suggested a circuity rule to account for the return trips. By using
750m as the maximum alighting distance, circuity factor of 1.7 and minimum transfer time
of 5 minutes and maximum time from 30 to 90 minutes, they inferred 96% of the boarding
locations and 74.5% of the alighting locations.

Nassir et al.| 2011 used AFC data with General Transit Feed Specification (GTFS) data
(Google| 2005)) instead of commonly used AVL data to infer origins and destinations. They
used the closest stop found within an upper bound distance of the smart card tag location
as the boarding. Using the route information given in the AFC tag (transaction), a search is
done for a trip closest in time within an interval of AFC transaction time. Using that trip,
the stop found closest to the next boarding is inferred as the alighting stop given that the
distance between inferred alighting and next boarding is less than 0.5 miles. |Gordon et al.
2018 extended the research on origin-destination estimation of smart card users to non-smart
card transit users. They proposed a scaling method for expanding the OD matrix using the
fare box data from London and compared the results with the Iterative Proportional Fitting
(IPF) method. Luo et al|2017 and |[Ma et al.[2013| used the AFC data to produce an aggre-
gate O-D matrix.
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Researchers have also tried to validate the trip chaining assumptions either by doing a
survey (Seaborn et al. |2009, [Wang et al. [2011) or using data from closed transit systems
(where passengers tap their card both when entering and as well as exiting the station)
(Alsger et al.2016). For example, Farzin|[2008| validated the assumptions of the closest stops
and daily symmetry using a travel diary survey in New York, which showed 90% accuracy.
Similarly, Alsger et al.|2016 used South-East Queensland public transport smart card data,
which has both boarding and alighting information, to implement and validate the current
trip chaining algorithms. The researchers also suggested some improvements in the current
algorithm, e.g. the alighting of the last tag on a day is the stop nearest to the first boarding
of the day on the given transit route. They also suggested the average distance between
the actual and estimated alighting stops as 0.33 miles instead of 0.5 miles. Of course, this
distance parameter can vary for different transit systems, which we try to relax in this study.

Recent research on trip chaining has pointed out some limitations in trip chaining algo-
rithms and suggested some improvements. For example, Munizaga and Palma2012 identified
that wrong alighting can be inferred if a passenger takes a bus which runs in both directions
to go a few blocks away because the passenger would just cross the street to board the next
bus rather than taking a long route in the opposite direction. To alleviate this problem, the
researchers suggested a cost function which is the sum of the current transaction time and
the walking time multiplied by some penalty factor obtained from a discrete choice model.
The adopted methodology inferred 80% of the trips using data from Santiago, Chile. The
algorithm proposed in the current paper avoids such situations by discarding the trip which
is less likely to be taken by the passenger. He and Trepaniér followed their previous work,
Trépanier et al.|2007), and proposed a method to infer the boarding and alighting of unlinked
trips. The method multiplies the temporal and spatial probabilities calculated using histor-
ical location and time of tags to infer the potential alighting.

The quality of trip chaining results depends on fare collection system correctly recording
the tag information which is assumed to be correct by most of the studies. This assump-
tion may result in wrong inference of boarding, alighting or especially transfer detections.
Robinson et al.|2014| pointed out various causes for why different systems may not record
correct information. The possible causes are AVL system failure, card reader failure, soft-
ware failure, etc. They proposed a method to identify such erroneous smart card data and
suggested where transit agencies should target resources to enhance the performance of their
AVL and AFC systems. They applied the proposed method to Singapore smart card data
and found that alighting for about 7.7% of the tags was found one stop before the actual
alighting location and for 0.7% of the tags, the alighting location was found one stop after
the actual alighting.

While applying the current trip chaining algorithms to the Twin Cities” AFC data, similar
errors in results were found. To improve the accuracy of the results, the current research
proposes a robust trip chaining method to alleviate the effect of various assumptions on the
parameters such as GPS inaccuracy (buffer zone for boarding stop inference), finding most
likely trip from GTFS data, etc. The method is similar to the one used for map matching
problem for multi-modal transportation network modeling (Perrine et al. 2015) and can be
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applied to other transit systems with any smart card data structure. The research also deals
with complex transit systems consisting of “pay-exit” buses (passengers tap their card while
alighting) in the Twin Cities, in which case passengers’ alighting is known but not their
boarding.

3. Motivation

This section explains the motivation behind this research, i.e. the problems and the
desired improvements in a current trip chaining algorithm developed by Nassir et al.[[2011.
The algorithm uses GTFS data (Google2005) instead of AVL data because the currently
available AVL data for the Twin Cities transit system gives the vehicle location on time
point stops only instead of all stop locations along a route. Widespread use of GTFS is
one of its advantages, making it more readily available than AVL data. Schedule adherence
information from AVL data is also used to supplement the GTFS data. Note that the
algorithm uses consecutive tags of a card holder which are termed as ”current” and ”"next”
tag throughout this paper. For the last tag of the day, next tag can be assumed as the
first tag of the day. First, the trip chaining algorithm developed by |[Nassir et al. 2011 is
summarized below:

1. Read AFC data and select the current and next tags.

2. Extract GTFS schedule of the current tag’s route and direction to find the closest stop
to the current tag location.

3. Go to step 4 if the distance between the current tag and closest stop found is less than
0.1 miles otherwise exclude the tag and go back to step 1.

4. Find a trip within TrT—« and TrT + [ closest to the current tag time. Here, TrT is
the current tag time and « and 8 are schedule adherence parameters determined using
Automatic Passenger Count-Vehicle Location (APC-VL) data.

5. Find the closest stop to the next tag location on the trip found in step 4 for the stops
sequence greater than the stop found in step 2.

6. Go to step 7 if the distance between the inferred alighting location of the current tag
and the next tag location is less than 0.5 miles, otherwise exclude the tag.

7. Go to step 8 if the boarding time of the next tag is greater than the alighting time of
the previous tag, otherwise exclude the tag and go to step 2.

8. Determine if the current tag is the first tag of the day. If it is, mark it as “boarding”,
otherwise determine if it is a transfer. A detailed discussion about transfer detection
is given later in this paper.

The method, although working in most of the cases, may result in wrong inference or no
inference in some cases. These cases are described below.

3.1. The sub-route problem

To manage some of the transit routes efficiently, the Twin Cities transit system has sub-
routes for most of the high frequency routes. For example, route 2 has sub-routes 2A, 2C,
2E and route 3 has sub-routes 3A, 3B, 3C, 3E, 3K. Generally, one of the sub-routes is more
common than the others and runs throughout the day, whereas others are either short turns



215 or branches to serve more areas. To better understand the sub-route problem, let us consider
26 an instance (Figure 1).

217
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Figure 1: Incorrect alighting inference due to selection of incorrect sub route

218 A passenger took the bus route 2 from Coffman Memorial Union stop and alighted at
219 Hennepin Ave and 8th Street to transfer to route 10. The current trip chaining algorithm
20 selects any trip from GTFS data which is closest in time to the current tag time. If it
a1 selects the trip within route 2A that only goes up to TCF Bank Stadium stop and infer it as
222 alighting stop, then the distance between this stop and the next tag location is more than
23 the walking distance threshold and the algorithm does not infer any alighting stop (discards
24 this record). In this case, a more robust inference method is required to correctly infer the
25 trip within route 2C, which connects with route 10 at Hennepin Ave and 8th St.

26 3.2. The boarding stop inference problem

207 The GPS location of tags provided by AFC system may consist of location measurement
2s errors (Robinson et al.|2014)). If the algorithm simply finds the closest stop to the tag location,
20 then a potentially wrong boarding stop inference may result in wrong trip inference, wrong
230 alighting stop inference or no inference at all.

a1 3.3. The “pay-exit” problem

23 Because of high commuter demand to Downtown Minneapolis, Downtown St. Paul, and
213 the University of Minnesota campus, some of the outbound bus routes in the evening peak
2. let passengers enter the bus while boarding and pay while alighting (unlike the regular routes
25 where riders tap while entering the bus). Such cases were not considered during previous
236 studies. In these cases, we do not know the boarding but know the alighting location.
237 Depending on the combination of tags made by a passenger throughout the day, missing
23 boarding or alighting may or may not be inferred. This arises four different cases depending
20 on the consecutive tags of the passenger (Figure 2).
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Figure 2: Four cases depending on the pay exit or regular route
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1. Current tag (B1) is regular and next tag (B2) is regular
This is the normal case which has been considered previously in the research. Here, we
know the boarding of the current as well as the next tag. Using the route and direction
information of the current tag, we can infer the alighting location of the current tag.

2. Current tag (Al) is pay exit and next tag (B2) is regular
In this case, we know the alighting of the current tag and boarding of the next tag.
This is the easiest case among four cases as we need not to infer any location. The only
thing to determine in this case is to detect whether or not the next tag is a transfer.
Note that the possibility of inferring the boarding of the current tag depends on its
previous tag. Similarly, the possibility of inferring the alighting of the next tag depends
on its next tag.

3. Current tag is regular (B1) and next tag (A2) is pay exit
This is the most difficult case among all as we know the boarding of the current tag
and the alighting of the next tag which means alighting of the current tag and the
boarding of the next tag is missing. Two sub-cases arise in this case depending on the
bus route used.

e If two different bus routes (which are not geographically parallel) are used for both
tags, then we can find stops connecting two routes which gives the least distance
between the inferred alighting of the current tag and the inferred boarding of the
next tag.

e If same or parallel routes are used for both tags, then we cannot infer the alighting
of the current tag and boarding of the next tag. This sub case is quite usual for
commuters who take a bus from sub-urban areas which is regular in the inbound
direction in the morning but when they return to their home, the same bus is pay
exit in the outbound direction in the evening. We propose a method of proportion
later in this paper to approximate these cases.

4. Current tag is pay exit (A1) and next tag (A2) is pay exit
In this case, we know the alighting of both current and next tag. We can make a
search list of the stops that come before the alighting stop of the next tag and infer
the boarding of the next tag by finding the stop closest to the alighting location of the
current tag. Again, the boarding of the first tag may or may not be inferred depending
on its previous tag.

4. The Robust Trip Chaining Algorithm

The proposed method for trip chaining in this paper is similar to map matching algo-
rithms used for multi-modal transportation network modeling (Li|2012, Perrine et al.|2015)).
The map matching algorithm is used to map the public transit stops from GTFS data to
a road network by creating a restricted shortest path problem. In this way, it avoids the
problems like complicated road geometry, and lack of dynamic vehicle information like ve-
hicle trajectory, speed, turning and heading. Similar methods are common for matching
GPS locations to existing road networks to track the trajectory of a vehicle using proba-
bility models such as Hidden Markov Model (Newson and Krumm| 2009). The proposed
trip chaining method also finds a set of candidate trips for a given AFC tag to reach the
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next tag, calculates the probability of each trip, then the most likely trip is found to infer
the boarding and alighting stops. In this way, different problems faced by the current trip
chaining algorithm are addressed. We start with the basic case when both of the consecutive
tags are regular which can be applied to any transit system and then we can expand this
method to specific cases for the Twin Cities data.

Table 1: Notations used in the paper

Variable Definition

n Index/row number in the AFC data
t Time of the tag

r Bus route number of the tag

) Direction of bus route
0
g

Geographical coordinates of the tag
C Great circle distance
Q@ Buffer distance for finding possible boarding stops
€ Buffer distance for finding possible alighting stops
T Buffer time for finding possible trips
k Index for different boarding stops
l Index for different trips
m Index for different alighting stops

Sh List of possible boarding stops for tag n

Tk List of possible trips for tag n and boarding stop &

JANY Absolute difference between tag time ¢,, and trip time ¢,,,,

Akl List of possible alighting stops for tag n, boarding stop k and trip [
IVkim In-vehicle travel time for trip [ with boarding stop £ and alighting stop m
Wiim Walking distance from alighting stop m for trip | with boarding stop &

to the next tag location 6,4

4.1. Trip set generation

Consider two consecutive tags n and n + 1 of a particular card number on a given date.
Using GTFS data, we can make a list of candidate stops S, = {snx, k = 1,2,...} found
within a buffer distance of o miles of the tag location 6, given route r, and direction ¢,.
The value of o can be suitably taken depending on the accuracy of the GPS. For example,
previous studies have used a = 0.1 miles to find the boarding stop. This will consider the
possibility of all the stops which are close to the tag location 6,, being the boarding stop and
help in obviating the problem of wrong boarding stop being selected. The error in the GPS
location is usually modeled using great circle distance (Newson and Krumm|2009) which is
the shortest distance between two points on the surface of a sphere (Navy [2008). We can
find the great circle distance d,; between 6,, and s, as

The next step is to find possible trips from these stop locations which go in the direction
of the next tag location. For each stop s, find the possible trips T,x = {tri,l = 1,2,...}

10
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which are within 7 minutes of tag time ¢,, assuming that bus can be late or early on a given
stop s,x by 7 minutes. This delay parameter 7 is flexible and can be adjusted for the given
algorithm. With greater value of 7, more trip options will be created. This will obviate the
problem of incorrect sub-route (Section 3.2) trip being selected. Then we calculate the delay

for different trips as:
A = |tery, — tal vk, (2)

Using the trip information, for each trip [, find a set of alighting stops A, = {agim, m =
1,2,...} which is within e miles of next tag location 6,1. Again, € is flexible and can be
assumed as any suitable value. This will avoid the problem of finding wrong alighting stop
mentioned in Munizaga and Palma) 2012, Let ZVy;,, be the in-vehicle time for the trip try,
with alighting stop agp, and wy, be the walking distance from alighting location ag, to
the next tag location 6,,1. All the potential stops and trips can be connected via a graph
shown in Figure 3.

Figure 3: Network of possible trips

4.2. Probability calculation for possible trips

Let P(s,i) be the probability of boarding stop s, from tag location 6,,. This probability
is a function of great circle distance d,; which is created because of the GPS inaccuracy and
can be modeled as a zero mean Gaussian distribution (van Diggelen/2007)), given as:

If we assume s,; was the actual boarding location, then d,; is an estimate of the mag-
nitude of GPS error. The standard deviation of these values, i.e. oy, is our estimate of the

11
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GPS error. We estimate o using the median absolute deviation, which is a robust estimator
of standard deviation. The value of o; can be given as:

o, = 1.4826 x median(d,;) VEk (4)

The probability of taking a trip try, from stop spg, i.e. P(trg|sax), is a function of bus
delay Akli
P(trkl|snk) = f(Akl) \V/k‘,l (5)

The probability distribution function f(Ay;) of bus delay can be calculated using APC-VL
data, which contains vehicle arrival times on limited stops for a given bus route trip [. We
can model the probability of reaching the next tag location 6,,; by taking trip try and
alighting at stop ag, using a multinomial logit route choice model given as:

—(B1I Vi +B2 2lm )
exX s
S o Vi k (6)
Z exp (6lIVk:pg+62 s )

p7g

P(aim|tris, Snx) =

where, s is the walking speed which is assumed as 3.0 miles per hour. [; and [, are
the parameters which shows the disutility of walking in comparison to in-vehicle travel time
according to user behavior.

Finally, assuming the random variables describing the probability distributions are inde-
pendent, we can evaluate the probability of traversing from location 6, to 6,1 using any of
the trips by multiplying (3), (5) and (6) which is the product of the following components.

e GPS inaccuracy of the current tag
e Bus delay of the current tag

e Route choice model consisting of in-vehicle and walking time between the current tag
and the next tag.

P(akim, tri, SnklOns Ont1) = P(@rim|t7x1, Snks On, Ons1) P&k Sk, Ons On1) P(Snk|Ons Ont1)
= f(ok, dnk) f(Ap1) Pagim|trer, sne) Vi k,m
(7)

Hence, the most likely boarding and alighting stops for this tag n can be inferred using
the trip for which P(akim, t7x1, Snk|0n, Ons1) is maximum.

4.83. FExtension to pay-exit cases

If there is a combination of pay-exit and regular tags (Section 3.3), then the probability
calculations change according to available information. These cases are discussed below:
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4.3.1. Current tag is pay exit and next tag is reqular
In this case, the probability of each trip consists of three components:

e GPS inaccuracy of the current tag
e Bus delay of the current tag

e Route choice model consisting of only walking time between the current tag and the
next tag.

The final expression is given below:

wklm)

exp_(BQ s

P(akim, t7kts Snk|Ons Ons1) = ok, duk) f(Ar) Vi, k (8)

Zp g eXpi(B2 =22

4.3.2. Current tag is reqular and next tag is pay exit

For this case, if two different routes are used for making these two trips, then the prob-
ability of each alternative to go from the current boarding to the next alighting consists of
three components:

e GPS inaccuracy of the current tag and the next tag
e Bus delay of the current tag and the next tag

e A common route choice model consisting of in-vehicle travel time of the two trips and
the walking time between the trips.

The final expression is given below:

P(aklml%t?"kll,t?”kz% Snkl, Snk2|9m 9n+1) = f(o.liv d}m)f(gli dik)fl(Aild)fQ(Azl)

—(B1TIV,, 1 +B1TV,,, o +Br —kim!1Z)
ex klm kim s 9
P wr O

w 12
kp
2 62 g9 )

—(81ZV,, 1 +B1LV

kpg kpg

Zg,pl 2 %P
If both tags use the same or parallel routes, we can make use of APC data to assign the
alighting of the current tag and boarding of the next tag. Usually some particular stops at
the end of the routes are more common stops for alighting. Using route information, we
calculate the proportion of alighting at these stops for each route, then assign the required
boarding and alighting stops proportionally for each case in the AFC data. In this way, we
may not get exact inference in the individual level, but on an aggregate level, the results will
be consistent. Anyhow, the percentage of these cases in the AFC database is very low.

4.3.3. Current tag is pay exit and next tag is pay exit
In this case, the probability of each trip consists of three components

e GPS inaccuracy of the next tag

e Bus delay of the next tag
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e route choice model consisting of in-vehicle travel time and walking time of the next
trip.

The final expression is given below:

eXp*(ﬁJszerﬁz%)

- (Blzvkpg +62 wlﬁpg )
D pg OXP s

P(akim, trits Snk|Ons Ont1) = f(oks dnre) f(Ag) f( ) Vi, k  (10)

4.4. Transfer detection

Transfer information given in the AFC data may not be reliable. Consistent with the fair
policy, the AFC system considers a tag as a transfer if it has been made within 150 minutes of
the previous tag time. The method described in |[Nassir et al.|2011|is used to detect transfers.
The method infers next tag as transfer if it has been made within 30 minutes and boarding if
it has been made after 90 minutes of alighting. Between 30 and 90 minutes, after alighting at
a station, the walking time (W) and setback delay time (D) (due to possible minor activities
like buying coffee or newspaper) is considered and a time ¢, is calculated which is the time
when boarding stop becomes accessible. Then, the number of opportunities (N,,,) to catch
the next bus is calculated between the time t,.. and the actual boarding time of the next
tag by counting the number of trips in GTFS data within the time range. If N,,, < 1, we
infer the next tag as transfer, otherwise, there is a possibility of an activity and we mark the
next tag as boarding.

Complete trip chaining algorithm is described in Algorithm 1.
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Algorithm 1 Robust Trip Chaining Algorithm

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
30:

31

32:
33:
34:
35:

36:
37:
38:
39:
40:
41:

42:
43:

1
2
3
4:
5:
6
7
8
9

: procedure
data structure
n: an AFC tag
pe: 1, if tag is pay exit, 0, otherwise
seq: sequence number of the tag serial number for the given date
ser: sequence number of a transit stop for a given tripID in GTFS data
P: list of possible stops around tag location
L: list of possible trips for a given stop
All other notations are consistent with Table 1
function FINDPOSSIBLESTOPS(tag[n|)
P
st_list < find a list of stops for tag[n].r and tag[n|.d from GTFS
for each stop s in st_list do
if dist(s,tag[n].0) < o then
append s to P
return P
function FINDPOSSIBLETRIPS(p)
L«
tr_list < find all the trips for given stop p.r, p.0 from GTFS
for each trip [ in tr_list do
if abs(l.dep — tag[n|.t) < 7 then
append [ to L
return L
function INFERBOARDINGALIGHTING(I, tag[n], tag[n + 1])
if the inference is for alighting then
al_stops < find stops with stop sequence greater than [.ser
return alighting stops within distance e of the tag[n + 1]
else
bo_stops < find stops with stop sequence less than [.ser
return boarding stops within distance € of the tag[n]
: Algorithm
for each n do
Prob + ||
if tag[n].seq = last tag of the day then

take tag[n 4 1] = first tag of the day for that serial number
P < FINDPOSSIBLESTOPS(tag[n|)

for each stop p in P do
L + FINDPOSSIBLETRIPS(p)
for each trip [ in L do
Depending on tag[n|.pe and tag[n + 1].pe
L <+ INFERBOARDINGALIGHTING (I, tag[n|, tag[n + 1])
Calculate Prob|l|

Find the trip with maximum probability
Infer the boarding and alighting of tag[n] and tag[n + 1] based on that trip
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5. Data Description and Preparation

5.1. Automated Data

Metro Transit is the primary transit agency in the Twin Cities, offering an integrated
network of buses, light rail and commuter trains. The automated data used in this study
is collected by Metro Transit. GTFS, AFC and APC-VL data are required for this re-
search. These datasets were uploaded to the PostgreSQL server and queried using R package
RPostgreSQL (Conway et al.|[2017). A brief discussion of different types of data and their
preparation is given below:

5.1.1. Automatic Fare Collection (AFC) Data

The AFC data used for this research comes from the University of Minnesota student
transit pass (U-Pass) data. The AFC system records the fare related information when a
passenger pays for a trip. This includes a particular serial ID assigned to the pass, date and
time of the tag, route information, geographical coordinates of the tag, transfer information,
etc. A sequence column was added to the data which keeps track of the sequence of the tags
made by a passenger on a particular day. Pay-exit column was also added to the data by
checking the buses and their direction in which they are pay-exit. Several issues with data
were resolved before running the trip chaining algorithm. For example, AFC data for light
rail does not have geographical coordinates but contains the station information where the
passenger boarded the light rail, in which case we do not have to search for possible boarding
stops. Another issue is that light rail AFC data does not have direction information. This
is because light rail stations serve the trains in both directions. We inferred the direction of
light rail trips using the next tag location.

After the initial data processing, there are still some tags which do not have any geo-
graphic information. These mainly consist of the buses not operated by Metro Transit (e.g
operated by Minnesota Valley Transit Authority (MVTA), First Transit, etc). We removed
such entries for the analysis because the GTFS data was unavailable for these services. The
data also contains some tags which have geographic location outside the transit service re-
gion, so we removed such entries from the dataset. We also removed the cases where a single
tag is made by a passenger on a day as trip chaining requires at least two trips made by a
passenger in order to estimate the origin and destination. Table 2 shows the number of tags
in the data set for four typical weekdays (March 07, 2016 to March 10, 2016).

Table 2: Tag Description

Description Number of tags | Percentage
Total tags 85,456

Missing geographical coordinates | 4,785 5.6

Outlier geographical location 3,515 4.1

Single tags 10,782 12.6

Total remaining tags 66,374 7.7
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5.1.2. General Transit Feed Specification (GTFS) Data
GTFS (Google 2005) data contains schedule information of the buses and light rail,
including their stops location, route information, scheduled arrival and departure time, etc.

For trip chaining, we selected the appropriate service ID for the study period and then query
the data.

5.1.3. Automatic Passenger Count-Vehicle Location (APC-VL) Data

The automatic passenger count system records date, time, transit route, stop and trip
information, departure and arrival time at time point stops, number of boarding and alighting
at every stop, and geographical coordinates of stops.

5.2. Model calibration

The probability distribution functions required for the trip chaining algorithm were pre-
pared as follows:

5.2.1. Gaussian model for GPS inaccuracy

To calibrate (equation (3-4)), we created a list of the AFC tag locations for which only
one stop is found within a buffer distance of 0.1 miles and calculated the values of the d,.
These stops can be regarded as ground truth data required for calibration. Using these
values, we calculated the value of o, = 55.25 feets.

5.2.2. Bus delay probability distribution

As mentioned before, automatic APC-VL data contains bus arrival time at limited stops.
We used the available arrival times to calculate the probability of bus route being early or
late. We used a discrete distribution for the bus delay distribution (equation (5)) with a
class range of one-minute intervals.

5.2.3. Route choice model
For (equation (6)), we assumed the value of 5; = 1, 3 = 2, and the walking speed, s = 3

miles per hour for our route choice model. These values are consistent with the literature
(Hunt| 1990, |Guo and Wilson|2007, Raveau et al./2012).

6. Results

6.1. Analysis of the results

After data preparation, Algorithm 1 was implemented in R (R Core Team/ 2017) for
U-Pass (University of Minnesota Pass) AFC data from March 07, 2016 to March 10, 2016.
Figure 4 shows the number of trips made by the U-Pass holders during the analysis period.
We can observe the morning peak between 6:30 A.M. to 9:30 P.M. and afternoon peak
between 3:00 P.M. to 6:30 P.M.

After removing all the outliers described above, 66,374 out of 85,456 tags were left. Out
of remaining 66,374 tags, both origin and destination of 56,423 (85%) tags were successfully
inferred in comparison to 46,507 (70%) tags being inferred using the baseline algorithm de-
scribed in Nassir et al.|2011. Table 3 summarizes the results in which about 81% of pay
exit cases were inferred using the proposed algorithm in comparison to no inference using

17



458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

Ridership
g
S

Date and Time

Figure 4: Time distribution of the trips in U-Pass data

the baseline algorithm. Another comparison was done between the two algorithms for in-
ferred boarding and alighting. Out of 46,507 inferred regular cases, 384 (0.8%) boardings
and 300 (0.6%) alightings were different. About 9% of the tags were inferred as transfers in
comparison to 17% in the original AFC data which considers every tag as a transfer if it is
made within 2 hours and 30 minutes of the previous tag. One point of interest is whether
the last tag of the day can be inferred using the first tag of the day. We found that out
of 26,275 last tags, the algorithm is able to infer the boarding and alighting of 21,110 tags
(80%). This shows that this assumption works well in practice. Among the tags which are
not inferred, about 59% are not inferred because no stop was found within walking distance
from the current alighting location to the next boarding location. The likely reason for this
non-inference is the use of another mode of transportation between two transit trips. We
also observed that due to wrong selection of trip IDs from GTFS data, around 558 tags were
not inferred using the baseline algorithm because the boarding time of the next tag was less
than the alighting time of the current tag. The proposed algorithm eliminated this problem.
This is because of the consideration of a list of possible trajectories for a given tag in the
proposed algorithm in comparison to only one trip in the baseline algorithm.

Table 3: Comparison of the results between the baseline and the proposed method

Algorithm Baseline Method | Proposed Method | Percent Improvement
Pay Exit Count 5,562 5,562

Regular Count 60,812 60,812

Pay Exit Inferred | 0 4,504 %

Regular Inferred 46,507 51,919 8%

Total Tag Count 66,374 66,374

Total tags inferred | 46,507 (70%) 56,423 (85%) 15%

Note: The percentage improvement is calculated with respect to the total number of tags (i.e. 66,
374)

The selection of the most likely trajectory based on the highest probability may result
in accumulation of the inference error if there are multiple likely trajectories instead of a
dominant one. In order to check for this possibility, we calculated the percentage difference
between the probabilities of the first and the second (if exists) most likely trajectories for
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every tag. The percentage difference is calculated with respect to the highest probability. A
histogram of the percentage difference of these probabilities is shown in Figure 5. We found
that more than 95% of the values were greater than 19% difference. To test if there exist
a significant number of trips with multiple likely trajectories, we extracted 5% of the trips
from lower tail of the distribution (shown by the dashed line) to compare the means of the
probabilities of the first and the second most likely trajectories. We used the paired two
sample T-test to compare the means.
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Figure 5: Distribution of the percentage difference between the probabilities of the first and the second (if
exists) most likely trajectories

HO ‘MUfirst = Msecond (11)
H 1 ‘Mfirst 7é Msecond

We found a T-statistic value of 24.383 which is greater than the critical value at 99%
confidence level. This rejects the null hypothesis that the means of the probabilities of the
first and second most likely trajectories are equal. We recommend to perform this test to
check the quality of the results. If there exists a significant number of trips with multiple
likely trajectories, then we either should consider all the likely trajectories for that tag or
choose a trajectory randomly from the set of likely trajectories.

It is difficult to validate the trip chaining results for an open transit system because of
the lack of ground truth data available to compare the results. We use the transit on-board

19



499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

survey data from 2016 to compare the total number of boarding and alighting on different
stops of a route. The on-board survey (OBS) collects data from individuals about their
travel itinerary such as origin and destination of the trip, boarding and alighting stops,
route, transfer information, etc. Then an expansion factor is used to expand the survey
for the total boarding and alighting counts obtained from the APC data. We analyzed the
high ridership routes such as route 2, 3 and Metro Green Line for this purpose. The overall
proportion of the boarding and alighting on different stops of these routes were similar. The
results for route 3 in eastbound direction is presented in Figure 6. We can observe that
the boarding proportions (Figure 6(a)) are almost similar at every stop except few stops.
Figure 6(b) shows the comparison of alighting proportion at different stops. The pattern
in alighting looks similar but the difference is quite high for some of the stops. We believe
that the error in the boarding and alighting proportions is caused by the low sampling rate
and possibly inaccurate boarding and alighting stops from the on-board survey. Wang et al.
2011 also faced similar challenges to use OBS for validation purposes. We also compared
the number of transfers made by the passengers to assess the accuracy of transfer inference.
We found the proportion of transfers similar to on-board survey. For example, for route 3
eastbound, the results shows 3.6 % transfers using the proposed algorithm in comparison to
3.5 % and 10.3 % using the on-board survey data and the AFC system respectively.

6.2. Applications using the inferred results

To summarize the outputs, heat maps of trip origins and destinations are prepared (Figure
7). The maps show that during morning peak hours, most of the trips originate from the
areas east of the campus, Downtown and southwest Minneapolis, Downtown St. Paul, area
around the university campus and Metro Green Line, while trip destinations are mainly at
the university campus. Looking at the results for the evening peak hours, the origins and
destinations look reversed, where most trips begin from the university campus and end at
popular morning origin locations.

We compared the route ridership to assess the most common transit routes used by
university students. Table 4 shows the high ridership routes and stops. In this table, as
expected Metro Green Line has the highest ridership as it connects Downtown Minneapolis
and Downtown St. Paul via university campus through two stations, Fast Bank Station
and West Bank Station, which are also the popular locations for boarding and alighting in
the stop table. Route 2 and route 3 are the most common bus routes used by the univer-
sity students who live close to the campus. Route 3 connects Downtown Minneapolis and
Downtown St. Paul via university by serving areas around the campus. Route 6, route
114 and route 113 serve the southwest suburbs while route 465 and 87 serve the southern
suburbs. It is interesting to see that many students from suburbs use bus to commute to
the campus. In the stop table (Table 4), stops located in the university campus such as
East Bank Station, Pleasant Street & Jones Hall, West Bank Station, Washington Avenue
& Coffman Union and Washington Avenue & Oak Street SE show high ridership. Other
high ridership stops shown in the table are Metro Green Line stations. Finally, 15th Av-
enue SE and Como Avenue is also a popular stop for boarding and alighting served by route 3.
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Figure 7: Intensity of trip origins and destinations. (For interpretation of colors in this figure, the reader is
referred to the web version of this article.)

The highest number of tags was made on the Metro Green Line stations for which we did
stop level origin-destination analysis. In Figure 8(a), we can observe that in the morning
peak and eastbound direction, most trips start from Downtown Minneapolis at the western
end of the line to the East Bank and West Bank Stations on the university campus or from
Downtown St. Paul Union Depot (Figure 8(b)) at the eastern end of the line to the East
Bank Station. Most of the students commute from the stations east of campus, for example
Stadium Village, Prospect park and Westgate which are closer to the university. Conversely,
during the evening peak, most trips go from East Bank and West Bank Stations to the
popular origin locations in the morning (Figure 8(c) and Figure 8(d)).

6.53. Discussion

In this section, we discuss the possible ways to infer the non-inferred tags. The proposed
method infers the boarding and alighting of the tags made by the passenger during the day
based on the assumptions given in section 2. If these assumptions are not satisfied, then
it cannot infer the boarding and alighting location of a given tag. Such trips (tags) are
called unlinked trips (He and Trépanier|2015)). The inference of such trips is possible using a
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Table 4: Routes and stop locations with high ridership

Route Ridership Stop/Station Boarding | Alighting
Metro Green Line | 22,144 Fast Bank Station 7052 | 7,314
’ & Platform
3 12,213 Pleasant St & Jones Hall 3,423 3,265
2 6,340 Stadium Village Station & Platform | 2,928 2,783
6 3,014 West Bank Station & Platform 2,924 2,723
465 2,274 Washington Ave & Coffman Union | 1,637 2,006
114 1,569 Westgate Station & Platform 1,441 1,280
113 1,207 15th Ave SE & Como Ave SE 1,105 1,013
901 1,126 Washington Av & Oak St SE 971 971
87 1,073 Prospect Park Station & Platform 923 828
608 704 Warehouse Hennepin Ave Station & 714 626
Platform

method proposed by He and Trépanier|2015, which assumes that passengers tend to follow the
same routine, and the historical alighting location and time information can be used to infer
the alighting location of an unlinked trip. The method extracts the historical destinations
for a passenger and tries to estimate the probability of alighting on these locations. The
probability is found using spatial and temporal proximity of the historical alighting and the
potential alighting. The method can be used in our case for the regular tags. We need to
repeat the procedure of finding the spatial and the temporal probabilities for all the possible
trajectories found for a given tag. However, the method may not be useful for the pay-exit
cases. For example, for a commuter who takes a regular route in the morning and pay-exit
route in the evening, there will be no historical alighting and boarding location for the current
and the next tag location respectively. Another disadvantage of combining the method
proposed by |He and Trépanier 2015 and the proposed method is heavy computational time
as the spatial and temporal probabilities need to be calculated for each possible trajectory.

Transit agencies require full O-D matrix for all the trips made by users given the errors
and the missing information. This can be achieved using the boarding and alighting count
data available from APC data. The O-D matrix obtained from AFC data using trip chaining
algorithm can be used as a seed or prior matrix in optimization methods proposed by [Van
Zuylen and Willumsen|[1980| or |Spiess||1987. These optimization methods promise to perform
better with a good quality seed matrix, which we can obtain from the trip chaining results.
Another possibility is to proportionally assign the non-inferred boarding and alighting based
on the APC data. Although these methods may not infer the correct boarding and alighting
on an individual level, they will improve the results on an aggregate level.

7. Conclusions and Recommendations for Future Research

This research proposes a robust method for trip chaining of transit smart card data,
which tries to relax various assumptions on the parameters used in the existing trip chaining
algorithms. The parameters can vary according to the quality of data and user behavior in
different transit systems, so a fixed value cannot be assumed for different transit systems.
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Figure 8: Passenger origin-destination flow on Metro Green Line light rail. (For interpretation of colors in
this figure, the reader is referred to the web version of this article.)

This is evident from trip chaining results for the Twin Cities AFC data. The proposed
method provides the flexibility to assume a higher value for these parameters to avoid wrong
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inference of origin and destination.

The method uses probability distributions for potential boarding stop location, bus de-
lay and passenger’s route choice behavior. By combining these probabilities, it infers the
most likely trajectory of the passenger. Though being an open transit system with pay-exit
buses and sub-routes, these attributes create various problems for trip chaining. Using the
proposed method, various problems such as erroneous GPS locations, selection of wrong trip
for inference, and pay-exit cases are addressed. The proposed algorithm can also be suitably
modified to deal with different pay exit cases.

The O-D matrix results can be used in multiple ways to understand the travel behavior
of passengers in a transit system. We presented the ridership analysis on an aggregate level
for the Twin Cities and also the route level analysis for a light rail transit line. We can
also use the trip chaining results by creating clusters of customers based on their regularity
in using transit system. These results can inform planners for better decisions to improve
transit services.

Current research can be expanded in multiple directions. The case where the current
tag is regular and the next tag is pay-exit and both tags use the same route is analyzed
using a method of proportions. Additional information from other data sources can help in
development of a suitable algorithm for this case. The results obtained from trip chaining
can be used for other research such as trip purpose inference, analyzing spatial and temporal
travel pattern, route choice behavior analysis of passengers and transit assignment models.
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