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Abstract

Development of an origin-destination demand matrix is crucial for transit planning. The
development process is facilitated by automated transit smart card data, making it possible
to mine boarding and alighting patterns on an individual basis. This research proposes
a novel trip chaining method which uses Automatic Fare Collection (AFC) and General
Transit Feed Specifications (GTFS) data to infer the most likely trajectory of individual
transit passengers. The method relaxes the assumptions on various parameters used in the
existing trip chaining algorithms such as transfer walking distance threshold, buffer distance
for selecting the boarding location, time window for selecting the vehicle trip, etc. The
method also resolves issues related to errors in GPS location recorded by AFC systems
or selection of incorrect sub-route from GTFS data. The proposed trip chaining method
generates a set of candidate trajectories for each AFC tag to reach the next tag, calculates
the probability of each trajectory, and selects the most likely trajectory to infer the boarding
and alighting stops. The method is applied to transit data from the Twin Cities, MN, which
has an open transit system where passengers tap smart cards only once when boarding (or
when alighting on pay-exit buses). Based on the consecutive tags of the passenger, the
proposed algorithm is also modified for pay-exit cases. The method is compared to previous
methods developed by the researchers and shows improvement in the number of inferred
cases. Finally, results are visualized to understand the route ridership and geographical
pattern of trips.
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1. Introduction1

For better service and planning, transit agencies need to understand passengers’ travel2

behavior. For this purpose, they conduct on-board surveys which collect data about passen-3

gers’ boarding and alighting location, purpose of travel, etc., and then use expansion factors4

to expand the survey data for the whole population. There are various limitations associated5

with these surveys, such as cost, small sample size, bias, and other general reporting errors6

(Attanucci, J. & Wilson 1981). Conversely, automated data collection systems (ADCS),7

which are designed for administrative purposes such as revenue management, provide a rich8

source of information about passengers travel pattern on an individual basis. The automated9

data offers several advantages (Wang et al. 2011) over traditional surveys by:10

1. providing a link to passenger’s trips over a longer period of time11

2. providing information about the share of different transit commuters (e.g. students,12

workers, etc.)13

3. storing the information in SQL database systems and using it efficiently14

4. providing various research opportunities for analyzing passengers’ travel pattern15

In recent years, there has been growing interest in using automated smart card data16

for travel behavior research in transit systems. Automatic Fare Collection (AFC) systems17

collect information about on-board transaction of passengers such as boarding stop/station,18

date and time of the transaction, route information, etc. The data is useful not only for19

improving day-to-day transit operations but also for long-term strategic planning of transit20

network (Pelletier et al. 2011). It has been used for a variety of purposes such as:21

1. stop-level origin-destination matrix estimation (Barry et al. 2007, Trépanier et al. 2007,22

Zhao et al. 2007, Alfred Chu and Chapleau 2008, Barry et al. 2009, Chu and Chapleau23

2010, Wang et al. 2011, Nassir et al. 2011, Munizaga and Palma 2012, Gordon et al.24

2013).25

2. trip purpose inference (Lee and Hickman 2014, Kusakabe and Asakura 2014, Alsger26

et al. 2018)27

3. route choice modeling (Kim et al. 2017, Zhao et al. 2017)28

4. passenger trip prediction (Zhao et al. 2018)29

5. mining spatial and temporal clusters of similar travel patterns (Ma et al. 2013, Briand30

et al. 2017, Khani 2018)31

6. passenger waiting time estimation (Ingvardson et al. 2018)32

This study focuses on one of the important input for analyzing a public transit sys-33

tem, which is the flow of passengers between different stations/stops known as an origin-34

destination (O-D) matrix. O-D estimation using automated smart card data has attracted35

attention of many researchers over the last decade (Barry et al. 2007, Trépanier et al. 2007,36

Zhao et al. 2007, Alfred Chu and Chapleau 2008, Farzin 2008, Barry et al. 2009, Chu and37

Chapleau 2010, Nassir et al. 2011, Wang et al. 2011, Ma et al. 2012, Munizaga and Palma38

2012, Gordon et al. 2013, He and Trépanier 2015). The estimation requires a sequence of39

trips made by the passenger throughout the day recorded using AFC system. But the in-40

formation available with this data is limited and the full sequence of trips is usually not41

available. This is because of the type of the fare collection system (open or closed) employed42
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by a transit agency. In closed transit systems (Alsger et al. 2016), origin and destination43

is known for the trips as passengers tap their card both when boarding as well as when44

alighting, whereas in open transit systems (Barry et al. 2007, Trépanier et al. 2007, Zhao45

et al. 2007, Alfred Chu and Chapleau 2008, Barry et al. 2009, Chu and Chapleau 2010,46

Nassir et al. 2011, Wang et al. 2011, Munizaga and Palma 2012, Gordon et al. 2013), the47

boarding of passengers is usually known, and the alighting is unknown as passengers only48

tap their card when boarding a transit vehicle. Passengers’ alighting location can then be49

inferred based on the next boarding location using a trip chaining algorithm (Barry et al.50

2007, Trépanier et al. 2007, Zhao et al. 2007, Alfred Chu and Chapleau 2008, Farzin 2008,51

Barry et al. 2009, Chu and Chapleau 2010, Nassir et al. 2011, Wang et al. 2011, Munizaga52

and Palma 2012, Ma et al. 2012, Gordon et al. 2013, He and Trépanier 2015, Kumar et al.53

2018).54

55

Trip chaining algorithms developed so far use assumptions on various parameters, e.g.56

buffer radius to find the closest stop to the boarding location, walking distance threshold57

after alighting to board the next route, time threshold to distinguish between boarding and58

transfer, etc. These parameters can vary among different transit systems and can affect the59

trip chaining results and therefore the origin-destination matrix. The current research tries60

to relax the assumptions related to these parameters by proposing a robust trip chaining61

algorithm.62

63

The algorithm is applied to the AFC data from Twin Cities, Minnesota which has an open64

transit system (Nassir et al. 2011), where transit passengers use (tap) their card only once.65

The system is more complex than other systems described in previous research because some-66

times passengers tap their card while entering the bus (when they board a “regular route”67

or “non pay-exit” bus) or sometimes while exiting the bus (when they alight a “pay-exit”68

bus). The pay exit buses are generally outbound trips from central areas such as Downtown69

Minneapolis or the University of Minnesota campus to sub-urban areas. The existing trip70

chaining algorithm changes significantly when the combination of such tags are observed for71

a card number. The proposed method creates a set of possible trips for a given card tag,72

calculates the probability that the passenger has used each trip, and then infers the boarding73

and alighting on the basis of the most likely trip.74

75

The rest of the paper is organized as follows: Section 2 presents a summary of related76

work done in this research area, followed by motivation behind this research in Section 3.77

Then, the proposed trip chaining algorithm is described in Section 4, which is followed by78

the analysis of the results in Section 5. Finally, conclusions and recommendations for future79

research are provided in Section 6.80

2. Related Work81

As most of the fare collection systems record passengers’ boarding information only,82

alighting information must be inferred using the sequence of taps (or tags) made by the83

passenger throughout the day. Thus, a significant amount of research has been done to84

develop algorithms to determine the alighting location (Li et al. 2018). Navick and Furth85
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2002 used location-stamped fare box data of Los Angeles area bus routes to determine86

alighting location using an assumption that boarding pattern of current trip and alighting87

pattern of opposite trip are symmetric for the entire day which means passengers board the88

bus again from the same stop where they alighted during the previous trip. Building on that89

assumption, Zhao et al. 2007, Barry et al. 2007, Barry et al. 2009, and Gordon et al. 201390

developed a method of trip chaining for origin and destination inference with the following91

assumptions:92

1. passengers return to the same location to board the bus where they alighted during93

the previous trip,94

2. no private mode of transportation is used between trips,95

3. passengers do not walk a long (more than a certain threshold) distance to board a bus96

or train,97

4. passengers end their last trip at the same location where they started their journey of98

the day.99

Based on the above assumptions, Trépanier et al. 2007 proposed a model which infers100

alighting stops by minimizing the distance between the alighting stop of the current trip and101

boarding of the next trip. They applied their method on AFC data from Quebec, Canada102

and inferred 66% of the trips. Similarly, Wang et al. 2011 proposed a method which combines103

Automatic Vehicle Location (AVL) data with AFC data from London to infer the origin and104

destination of different trips and validated the results using bus passenger origin and desti-105

nation survey (BODS) data. Then Seaborn et al. 2009 stated some rules for trip chaining106

such as maximum acceptable transfer time of 20 minutes for underground subway-to-bus, 35107

minutes for bus-to-underground subway, and 45 minutes for bus to bus trips. Building on108

the work of Seaborn et al. 2009 and Wang et al. 2011 in estimating origin-destination matrix109

using London smart card (Oyster) data and iBus vehicle location data, Gordon et al. 2013110

specified the importance of the return trips, bus wait time, repeated service and circuity in111

trips. The researchers suggested a circuity rule to account for the return trips. By using112

750m as the maximum alighting distance, circuity factor of 1.7 and minimum transfer time113

of 5 minutes and maximum time from 30 to 90 minutes, they inferred 96% of the boarding114

locations and 74.5% of the alighting locations.115

116

Nassir et al. 2011 used AFC data with General Transit Feed Specification (GTFS) data117

(Google 2005) instead of commonly used AVL data to infer origins and destinations. They118

used the closest stop found within an upper bound distance of the smart card tag location119

as the boarding. Using the route information given in the AFC tag (transaction), a search is120

done for a trip closest in time within an interval of AFC transaction time. Using that trip,121

the stop found closest to the next boarding is inferred as the alighting stop given that the122

distance between inferred alighting and next boarding is less than 0.5 miles. Gordon et al.123

2018 extended the research on origin-destination estimation of smart card users to non-smart124

card transit users. They proposed a scaling method for expanding the OD matrix using the125

fare box data from London and compared the results with the Iterative Proportional Fitting126

(IPF) method. Luo et al. 2017 and Ma et al. 2013 used the AFC data to produce an aggre-127

gate O-D matrix.128

129
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Researchers have also tried to validate the trip chaining assumptions either by doing a130

survey (Seaborn et al. 2009, Wang et al. 2011) or using data from closed transit systems131

(where passengers tap their card both when entering and as well as exiting the station)132

(Alsger et al. 2016). For example, Farzin 2008 validated the assumptions of the closest stops133

and daily symmetry using a travel diary survey in New York, which showed 90% accuracy.134

Similarly, Alsger et al. 2016 used South-East Queensland public transport smart card data,135

which has both boarding and alighting information, to implement and validate the current136

trip chaining algorithms. The researchers also suggested some improvements in the current137

algorithm, e.g. the alighting of the last tag on a day is the stop nearest to the first boarding138

of the day on the given transit route. They also suggested the average distance between139

the actual and estimated alighting stops as 0.33 miles instead of 0.5 miles. Of course, this140

distance parameter can vary for different transit systems, which we try to relax in this study.141

142

Recent research on trip chaining has pointed out some limitations in trip chaining algo-143

rithms and suggested some improvements. For example, Munizaga and Palma 2012 identified144

that wrong alighting can be inferred if a passenger takes a bus which runs in both directions145

to go a few blocks away because the passenger would just cross the street to board the next146

bus rather than taking a long route in the opposite direction. To alleviate this problem, the147

researchers suggested a cost function which is the sum of the current transaction time and148

the walking time multiplied by some penalty factor obtained from a discrete choice model.149

The adopted methodology inferred 80% of the trips using data from Santiago, Chile. The150

algorithm proposed in the current paper avoids such situations by discarding the trip which151

is less likely to be taken by the passenger. He and Trepaniér followed their previous work,152

Trépanier et al. 2007, and proposed a method to infer the boarding and alighting of unlinked153

trips. The method multiplies the temporal and spatial probabilities calculated using histor-154

ical location and time of tags to infer the potential alighting.155

156

The quality of trip chaining results depends on fare collection system correctly recording157

the tag information which is assumed to be correct by most of the studies. This assump-158

tion may result in wrong inference of boarding, alighting or especially transfer detections.159

Robinson et al. 2014 pointed out various causes for why different systems may not record160

correct information. The possible causes are AVL system failure, card reader failure, soft-161

ware failure, etc. They proposed a method to identify such erroneous smart card data and162

suggested where transit agencies should target resources to enhance the performance of their163

AVL and AFC systems. They applied the proposed method to Singapore smart card data164

and found that alighting for about 7.7% of the tags was found one stop before the actual165

alighting location and for 0.7% of the tags, the alighting location was found one stop after166

the actual alighting.167

168

While applying the current trip chaining algorithms to the Twin Cities’ AFC data, similar169

errors in results were found. To improve the accuracy of the results, the current research170

proposes a robust trip chaining method to alleviate the effect of various assumptions on the171

parameters such as GPS inaccuracy (buffer zone for boarding stop inference), finding most172

likely trip from GTFS data, etc. The method is similar to the one used for map matching173

problem for multi-modal transportation network modeling (Perrine et al. 2015) and can be174
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applied to other transit systems with any smart card data structure. The research also deals175

with complex transit systems consisting of “pay-exit” buses (passengers tap their card while176

alighting) in the Twin Cities, in which case passengers’ alighting is known but not their177

boarding.178

3. Motivation179

This section explains the motivation behind this research, i.e. the problems and the180

desired improvements in a current trip chaining algorithm developed by Nassir et al. 2011.181

The algorithm uses GTFS data (Google 2005) instead of AVL data because the currently182

available AVL data for the Twin Cities transit system gives the vehicle location on time183

point stops only instead of all stop locations along a route. Widespread use of GTFS is184

one of its advantages, making it more readily available than AVL data. Schedule adherence185

information from AVL data is also used to supplement the GTFS data. Note that the186

algorithm uses consecutive tags of a card holder which are termed as ”current” and ”next”187

tag throughout this paper. For the last tag of the day, next tag can be assumed as the188

first tag of the day. First, the trip chaining algorithm developed by Nassir et al. 2011 is189

summarized below:190

1. Read AFC data and select the current and next tags.191

2. Extract GTFS schedule of the current tag’s route and direction to find the closest stop192

to the current tag location.193

3. Go to step 4 if the distance between the current tag and closest stop found is less than194

0.1 miles otherwise exclude the tag and go back to step 1.195

4. Find a trip within TrT–α and TrT + β closest to the current tag time. Here, TrT is196

the current tag time and α and β are schedule adherence parameters determined using197

Automatic Passenger Count-Vehicle Location (APC-VL) data.198

5. Find the closest stop to the next tag location on the trip found in step 4 for the stops199

sequence greater than the stop found in step 2.200

6. Go to step 7 if the distance between the inferred alighting location of the current tag201

and the next tag location is less than 0.5 miles, otherwise exclude the tag.202

7. Go to step 8 if the boarding time of the next tag is greater than the alighting time of203

the previous tag, otherwise exclude the tag and go to step 2.204

8. Determine if the current tag is the first tag of the day. If it is, mark it as “boarding”,205

otherwise determine if it is a transfer. A detailed discussion about transfer detection206

is given later in this paper.207

The method, although working in most of the cases, may result in wrong inference or no208

inference in some cases. These cases are described below.209

3.1. The sub-route problem210

To manage some of the transit routes efficiently, the Twin Cities transit system has sub-211

routes for most of the high frequency routes. For example, route 2 has sub-routes 2A, 2C,212

2E and route 3 has sub-routes 3A, 3B, 3C, 3E, 3K. Generally, one of the sub-routes is more213

common than the others and runs throughout the day, whereas others are either short turns214
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or branches to serve more areas. To better understand the sub-route problem, let us consider215

an instance (Figure 1).216

217

Coffman Memorial
Union stop

TCF Bank
Stadium

Wrong
Alighting
inference

Route 2A

Route 2C

Hennepin Ave
and 8th St

Route 10

Transfer

Tag Location

Transit Stop

Figure 1: Incorrect alighting inference due to selection of incorrect sub route

A passenger took the bus route 2 from Coffman Memorial Union stop and alighted at218

Hennepin Ave and 8th Street to transfer to route 10. The current trip chaining algorithm219

selects any trip from GTFS data which is closest in time to the current tag time. If it220

selects the trip within route 2A that only goes up to TCF Bank Stadium stop and infer it as221

alighting stop, then the distance between this stop and the next tag location is more than222

the walking distance threshold and the algorithm does not infer any alighting stop (discards223

this record). In this case, a more robust inference method is required to correctly infer the224

trip within route 2C, which connects with route 10 at Hennepin Ave and 8th St.225

3.2. The boarding stop inference problem226

The GPS location of tags provided by AFC system may consist of location measurement227

errors (Robinson et al. 2014). If the algorithm simply finds the closest stop to the tag location,228

then a potentially wrong boarding stop inference may result in wrong trip inference, wrong229

alighting stop inference or no inference at all.230

3.3. The “pay-exit” problem231

Because of high commuter demand to Downtown Minneapolis, Downtown St. Paul, and232

the University of Minnesota campus, some of the outbound bus routes in the evening peak233

let passengers enter the bus while boarding and pay while alighting (unlike the regular routes234

where riders tap while entering the bus). Such cases were not considered during previous235

studies. In these cases, we do not know the boarding but know the alighting location.236

Depending on the combination of tags made by a passenger throughout the day, missing237

boarding or alighting may or may not be inferred. This arises four different cases depending238

on the consecutive tags of the passenger (Figure 2).239
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Figure 2: Four cases depending on the pay exit or regular route
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1. Current tag (B1) is regular and next tag (B2) is regular240

This is the normal case which has been considered previously in the research. Here, we241

know the boarding of the current as well as the next tag. Using the route and direction242

information of the current tag, we can infer the alighting location of the current tag.243

2. Current tag (A1) is pay exit and next tag (B2) is regular244

In this case, we know the alighting of the current tag and boarding of the next tag.245

This is the easiest case among four cases as we need not to infer any location. The only246

thing to determine in this case is to detect whether or not the next tag is a transfer.247

Note that the possibility of inferring the boarding of the current tag depends on its248

previous tag. Similarly, the possibility of inferring the alighting of the next tag depends249

on its next tag.250

3. Current tag is regular (B1) and next tag (A2) is pay exit251

This is the most difficult case among all as we know the boarding of the current tag252

and the alighting of the next tag which means alighting of the current tag and the253

boarding of the next tag is missing. Two sub-cases arise in this case depending on the254

bus route used.255

• If two different bus routes (which are not geographically parallel) are used for both256

tags, then we can find stops connecting two routes which gives the least distance257

between the inferred alighting of the current tag and the inferred boarding of the258

next tag.259

• If same or parallel routes are used for both tags, then we cannot infer the alighting260

of the current tag and boarding of the next tag. This sub case is quite usual for261

commuters who take a bus from sub-urban areas which is regular in the inbound262

direction in the morning but when they return to their home, the same bus is pay263

exit in the outbound direction in the evening. We propose a method of proportion264

later in this paper to approximate these cases.265

4. Current tag is pay exit (A1) and next tag (A2) is pay exit266

In this case, we know the alighting of both current and next tag. We can make a267

search list of the stops that come before the alighting stop of the next tag and infer268

the boarding of the next tag by finding the stop closest to the alighting location of the269

current tag. Again, the boarding of the first tag may or may not be inferred depending270

on its previous tag.271

4. The Robust Trip Chaining Algorithm272

The proposed method for trip chaining in this paper is similar to map matching algo-273

rithms used for multi-modal transportation network modeling (Li 2012, Perrine et al. 2015).274

The map matching algorithm is used to map the public transit stops from GTFS data to275

a road network by creating a restricted shortest path problem. In this way, it avoids the276

problems like complicated road geometry, and lack of dynamic vehicle information like ve-277

hicle trajectory, speed, turning and heading. Similar methods are common for matching278

GPS locations to existing road networks to track the trajectory of a vehicle using proba-279

bility models such as Hidden Markov Model (Newson and Krumm 2009). The proposed280

trip chaining method also finds a set of candidate trips for a given AFC tag to reach the281
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next tag, calculates the probability of each trip, then the most likely trip is found to infer282

the boarding and alighting stops. In this way, different problems faced by the current trip283

chaining algorithm are addressed. We start with the basic case when both of the consecutive284

tags are regular which can be applied to any transit system and then we can expand this285

method to specific cases for the Twin Cities data.286

287

Table 1: Notations used in the paper

Variable Definition
n Index/row number in the AFC data
t Time of the tag
r Bus route number of the tag
δ Direction of bus route
θ Geographical coordinates of the tag
GC Great circle distance
α Buffer distance for finding possible boarding stops
ε Buffer distance for finding possible alighting stops
τ Buffer time for finding possible trips
k Index for different boarding stops
l Index for different trips
m Index for different alighting stops
Sn List of possible boarding stops for tag n
Tnk List of possible trips for tag n and boarding stop k
∆kl Absolute difference between tag time tn and trip time ttrkl
Ankl List of possible alighting stops for tag n, boarding stop k and trip l
IVklm In-vehicle travel time for trip l with boarding stop k and alighting stop m
wklm Walking distance from alighting stop m for trip l with boarding stop k

to the next tag location θn+1

4.1. Trip set generation288

Consider two consecutive tags n and n+ 1 of a particular card number on a given date.289

Using GTFS data, we can make a list of candidate stops Sn = {snk, k = 1, 2, ...} found290

within a buffer distance of α miles of the tag location θn given route rn and direction δn.291

The value of α can be suitably taken depending on the accuracy of the GPS. For example,292

previous studies have used α = 0.1 miles to find the boarding stop. This will consider the293

possibility of all the stops which are close to the tag location θn being the boarding stop and294

help in obviating the problem of wrong boarding stop being selected. The error in the GPS295

location is usually modeled using great circle distance (Newson and Krumm 2009) which is296

the shortest distance between two points on the surface of a sphere (Navy 2008). We can297

find the great circle distance dnk between θn and snk as298

dnk = GC(θn, snk) ∀k (1)

The next step is to find possible trips from these stop locations which go in the direction299

of the next tag location. For each stop snk, find the possible trips Tnk = {trkl, l = 1, 2, ...}300

10



which are within τ minutes of tag time tn assuming that bus can be late or early on a given301

stop snk by τ minutes. This delay parameter τ is flexible and can be adjusted for the given302

algorithm. With greater value of τ , more trip options will be created. This will obviate the303

problem of incorrect sub-route (Section 3.2) trip being selected. Then we calculate the delay304

for different trips as:305

∆kl = |ttrkl − tn| ∀k, l (2)

Using the trip information, for each trip l, find a set of alighting stops Ankl = {aklm,m =306

1, 2, ...} which is within ε miles of next tag location θn+1. Again, ε is flexible and can be307

assumed as any suitable value. This will avoid the problem of finding wrong alighting stop308

mentioned in Munizaga and Palma 2012. Let IVklm be the in-vehicle time for the trip trkl309

with alighting stop aklm and wklm be the walking distance from alighting location aklm to310

the next tag location θn+1. All the potential stops and trips can be connected via a graph311

shown in Figure 3.312

θnTag n sn1

sn2

sn3

dn1

dn2

dn3

tr11

tr21

tr22

tr31

tr32

∆11

∆21

∆22

∆31

∆32

a11

a21

a221

a223

a31

a32

IV11

IV21

IV221

IV222

IV31

IV32

θn+1
w11

w21

w221

w222

w31

w32

Tag n+ 1

Figure 3: Network of possible trips

4.2. Probability calculation for possible trips313

Let P (snk) be the probability of boarding stop snk from tag location θn. This probability314

is a function of great circle distance dnk which is created because of the GPS inaccuracy and315

can be modeled as a zero mean Gaussian distribution (van Diggelen 2007), given as:316

P (snk) = f(σk, dnk) =
1√

2πσ2
k

exp
−0.5(

dnk
σk

)2 ∀k (3)

If we assume snk was the actual boarding location, then dnk is an estimate of the mag-317

nitude of GPS error. The standard deviation of these values, i.e. σk, is our estimate of the318
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GPS error. We estimate σk using the median absolute deviation, which is a robust estimator319

of standard deviation. The value of σk can be given as:320

σk = 1.4826 ∗median(dnk) ∀k (4)

The probability of taking a trip trkl from stop snk, i.e. P (trkl|snk), is a function of bus321

delay ∆kl:322

P (trkl|snk) = f(∆kl) ∀k, l (5)

323

The probability distribution function f(∆kl) of bus delay can be calculated using APC-VL324

data, which contains vehicle arrival times on limited stops for a given bus route trip l. We325

can model the probability of reaching the next tag location θn+1 by taking trip trkl and326

alighting at stop aklm using a multinomial logit route choice model given as:327

P (aklm|trkl, snk) =
exp−(β1IVklm+β2

wklm
s

)∑
p,g exp−(β1IVkpg+β2

wkpg
s

)
∀l, k (6)

where, s is the walking speed which is assumed as 3.0 miles per hour. β1 and β2 are328

the parameters which shows the disutility of walking in comparison to in-vehicle travel time329

according to user behavior.330

331

Finally, assuming the random variables describing the probability distributions are inde-332

pendent, we can evaluate the probability of traversing from location θn to θn+1 using any of333

the trips by multiplying (3), (5) and (6) which is the product of the following components.334

• GPS inaccuracy of the current tag335

• Bus delay of the current tag336

• Route choice model consisting of in-vehicle and walking time between the current tag337

and the next tag.338

P (aklm, trkl, snk|θn, θn+1) = P (aklm|trkl, snk, θn, θn+1)P (trkl|snk, θn, θn+1)P (snk|θn, θn+1)
= f(σk, dnk)f(∆kl)P (aklm|trkl, snk) ∀l, k,m

(7)
Hence, the most likely boarding and alighting stops for this tag n can be inferred using339

the trip for which P (aklm, trkl, snk|θn, θn+1) is maximum.340

4.3. Extension to pay-exit cases341

If there is a combination of pay-exit and regular tags (Section 3.3), then the probability342

calculations change according to available information. These cases are discussed below:343
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4.3.1. Current tag is pay exit and next tag is regular344

In this case, the probability of each trip consists of three components:345

• GPS inaccuracy of the current tag346

• Bus delay of the current tag347

• Route choice model consisting of only walking time between the current tag and the348

next tag.349

The final expression is given below:350

P (aklm, trkl, snk|θn, θn+1) = f(σk, dnk)f(∆kl)
exp−(β2

wklm
s

)∑
p,g exp−(β2

wkpg
s

)
∀l, k (8)

4.3.2. Current tag is regular and next tag is pay exit351

For this case, if two different routes are used for making these two trips, then the prob-352

ability of each alternative to go from the current boarding to the next alighting consists of353

three components:354

• GPS inaccuracy of the current tag and the next tag355

• Bus delay of the current tag and the next tag356

• A common route choice model consisting of in-vehicle travel time of the two trips and357

the walking time between the trips.358

The final expression is given below:359

P (aklm12 , trkl1 , trkl2 , snk1 , snk2|θn, θn+1) = f(σ1
k, d

1
nk)f(σ2

k, d
2
nk)f

1(∆1
kl)f

2(∆2
kl)

exp−(β1IVklm1+β1IVklm2+β2
w
klm12
s

)∑
g,p1,p2 exp−(β1IVkpg1+β1IVkpg2+β2

w
kpg12

s
)
∀l, k (9)

If both tags use the same or parallel routes, we can make use of APC data to assign the360

alighting of the current tag and boarding of the next tag. Usually some particular stops at361

the end of the routes are more common stops for alighting. Using route information, we362

calculate the proportion of alighting at these stops for each route, then assign the required363

boarding and alighting stops proportionally for each case in the AFC data. In this way, we364

may not get exact inference in the individual level, but on an aggregate level, the results will365

be consistent. Anyhow, the percentage of these cases in the AFC database is very low.366

4.3.3. Current tag is pay exit and next tag is pay exit367

In this case, the probability of each trip consists of three components368

• GPS inaccuracy of the next tag369

• Bus delay of the next tag370
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• route choice model consisting of in-vehicle travel time and walking time of the next371

trip.372

The final expression is given below:373

P (aklm, trkl, snk|θn, θn+1) = f(σk, dn+1,k)f(∆kl)f(
exp−(β1IVklm+β2

wklm
s

)∑
p,g exp−(β1IVkpg+β2

wkpg
s

)
) ∀l, k (10)

4.4. Transfer detection374

Transfer information given in the AFC data may not be reliable. Consistent with the fair375

policy, the AFC system considers a tag as a transfer if it has been made within 150 minutes of376

the previous tag time. The method described in Nassir et al. 2011 is used to detect transfers.377

The method infers next tag as transfer if it has been made within 30 minutes and boarding if378

it has been made after 90 minutes of alighting. Between 30 and 90 minutes, after alighting at379

a station, the walking time (W) and setback delay time (D) (due to possible minor activities380

like buying coffee or newspaper) is considered and a time tacc is calculated which is the time381

when boarding stop becomes accessible. Then, the number of opportunities (Nopp) to catch382

the next bus is calculated between the time tacc and the actual boarding time of the next383

tag by counting the number of trips in GTFS data within the time range. If Nopp ≤ 1, we384

infer the next tag as transfer, otherwise, there is a possibility of an activity and we mark the385

next tag as boarding.386

Complete trip chaining algorithm is described in Algorithm 1.387
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Algorithm 1 Robust Trip Chaining Algorithm

1: procedure
2: data structure
3: n: an AFC tag
4: pe: 1, if tag is pay exit, 0, otherwise
5: seq: sequence number of the tag serial number for the given date
6: ser: sequence number of a transit stop for a given tripID in GTFS data
7: P : list of possible stops around tag location
8: L: list of possible trips for a given stop
9: All other notations are consistent with Table 1

10: function FindPossibleStops(tag[n])
11: P ← []
12: st list← find a list of stops for tag[n].r and tag[n].δ from GTFS
13: for each stop s in st list do
14: if dist(s, tag[n].θ) < α then
15: append s to P

16: return P
17: function FindPossibleTrips(p)
18: L← []
19: tr list← find all the trips for given stop p.r, p.δ from GTFS
20: for each trip l in tr list do
21: if abs(l.dep− tag[n].t) ≤ τ then
22: append l to L

23: return L
24: function InferBoardingAlighting(l, tag[n], tag[n+ 1])
25: if the inference is for alighting then
26: al stops← find stops with stop sequence greater than l.ser
27: return alighting stops within distance ε of the tag[n+ 1]
28: else
29: bo stops← find stops with stop sequence less than l.ser
30: return boarding stops within distance ε of the tag[n]

31: Algorithm
32: for each n do
33: Prob← []
34: if tag[n].seq = last tag of the day then
35: take tag[n+ 1] = first tag of the day for that serial number

P ← FindPossibleStops(tag[n])
36: for each stop p in P do
37: L← FindPossibleTrips(p)
38: for each trip l in L do
39: Depending on tag[n].pe and tag[n+ 1].pe
40: L← InferBoardingAlighting(l, tag[n], tag[n+ 1])
41: Calculate Prob[l]

42: Find the trip with maximum probability
43: Infer the boarding and alighting of tag[n] and tag[n+ 1] based on that trip
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5. Data Description and Preparation388

5.1. Automated Data389

Metro Transit is the primary transit agency in the Twin Cities, offering an integrated390

network of buses, light rail and commuter trains. The automated data used in this study391

is collected by Metro Transit. GTFS, AFC and APC-VL data are required for this re-392

search. These datasets were uploaded to the PostgreSQL server and queried using R package393

RPostgreSQL (Conway et al. 2017). A brief discussion of different types of data and their394

preparation is given below:395

5.1.1. Automatic Fare Collection (AFC) Data396

The AFC data used for this research comes from the University of Minnesota student397

transit pass (U-Pass) data. The AFC system records the fare related information when a398

passenger pays for a trip. This includes a particular serial ID assigned to the pass, date and399

time of the tag, route information, geographical coordinates of the tag, transfer information,400

etc. A sequence column was added to the data which keeps track of the sequence of the tags401

made by a passenger on a particular day. Pay-exit column was also added to the data by402

checking the buses and their direction in which they are pay-exit. Several issues with data403

were resolved before running the trip chaining algorithm. For example, AFC data for light404

rail does not have geographical coordinates but contains the station information where the405

passenger boarded the light rail, in which case we do not have to search for possible boarding406

stops. Another issue is that light rail AFC data does not have direction information. This407

is because light rail stations serve the trains in both directions. We inferred the direction of408

light rail trips using the next tag location.409

410

After the initial data processing, there are still some tags which do not have any geo-411

graphic information. These mainly consist of the buses not operated by Metro Transit (e.g412

operated by Minnesota Valley Transit Authority (MVTA), First Transit, etc). We removed413

such entries for the analysis because the GTFS data was unavailable for these services. The414

data also contains some tags which have geographic location outside the transit service re-415

gion, so we removed such entries from the dataset. We also removed the cases where a single416

tag is made by a passenger on a day as trip chaining requires at least two trips made by a417

passenger in order to estimate the origin and destination. Table 2 shows the number of tags418

in the data set for four typical weekdays (March 07, 2016 to March 10, 2016).419

Table 2: Tag Description

Description Number of tags Percentage
Total tags 85,456
Missing geographical coordinates 4,785 5.6
Outlier geographical location 3,515 4.1
Single tags 10,782 12.6
Total remaining tags 66,374 77.7
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5.1.2. General Transit Feed Specification (GTFS) Data420

GTFS (Google 2005) data contains schedule information of the buses and light rail,421

including their stops location, route information, scheduled arrival and departure time, etc.422

For trip chaining, we selected the appropriate service ID for the study period and then query423

the data.424

5.1.3. Automatic Passenger Count-Vehicle Location (APC-VL) Data425

The automatic passenger count system records date, time, transit route, stop and trip426

information, departure and arrival time at time point stops, number of boarding and alighting427

at every stop, and geographical coordinates of stops.428

5.2. Model calibration429

The probability distribution functions required for the trip chaining algorithm were pre-430

pared as follows:431

5.2.1. Gaussian model for GPS inaccuracy432

To calibrate (equation (3-4)), we created a list of the AFC tag locations for which only433

one stop is found within a buffer distance of 0.1 miles and calculated the values of the dnk.434

These stops can be regarded as ground truth data required for calibration. Using these435

values, we calculated the value of σk = 55.25 feets.436

5.2.2. Bus delay probability distribution437

As mentioned before, automatic APC-VL data contains bus arrival time at limited stops.438

We used the available arrival times to calculate the probability of bus route being early or439

late. We used a discrete distribution for the bus delay distribution (equation (5)) with a440

class range of one-minute intervals.441

5.2.3. Route choice model442

For (equation (6)), we assumed the value of β1 = 1, β2 = 2, and the walking speed, s = 3443

miles per hour for our route choice model. These values are consistent with the literature444

(Hunt 1990, Guo and Wilson 2007, Raveau et al. 2012).445

6. Results446

6.1. Analysis of the results447

After data preparation, Algorithm 1 was implemented in R (R Core Team 2017) for448

U-Pass (University of Minnesota Pass) AFC data from March 07, 2016 to March 10, 2016.449

Figure 4 shows the number of trips made by the U-Pass holders during the analysis period.450

We can observe the morning peak between 6:30 A.M. to 9:30 P.M. and afternoon peak451

between 3:00 P.M. to 6:30 P.M.452

After removing all the outliers described above, 66,374 out of 85,456 tags were left. Out453

of remaining 66,374 tags, both origin and destination of 56,423 (85%) tags were successfully454

inferred in comparison to 46,507 (70%) tags being inferred using the baseline algorithm de-455

scribed in Nassir et al. 2011. Table 3 summarizes the results in which about 81% of pay456

exit cases were inferred using the proposed algorithm in comparison to no inference using457
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Figure 4: Time distribution of the trips in U-Pass data

the baseline algorithm. Another comparison was done between the two algorithms for in-458

ferred boarding and alighting. Out of 46,507 inferred regular cases, 384 (0.8%) boardings459

and 300 (0.6%) alightings were different. About 9% of the tags were inferred as transfers in460

comparison to 17% in the original AFC data which considers every tag as a transfer if it is461

made within 2 hours and 30 minutes of the previous tag. One point of interest is whether462

the last tag of the day can be inferred using the first tag of the day. We found that out463

of 26,275 last tags, the algorithm is able to infer the boarding and alighting of 21,110 tags464

(80%). This shows that this assumption works well in practice. Among the tags which are465

not inferred, about 59% are not inferred because no stop was found within walking distance466

from the current alighting location to the next boarding location. The likely reason for this467

non-inference is the use of another mode of transportation between two transit trips. We468

also observed that due to wrong selection of trip IDs from GTFS data, around 558 tags were469

not inferred using the baseline algorithm because the boarding time of the next tag was less470

than the alighting time of the current tag. The proposed algorithm eliminated this problem.471

This is because of the consideration of a list of possible trajectories for a given tag in the472

proposed algorithm in comparison to only one trip in the baseline algorithm.473

474

Table 3: Comparison of the results between the baseline and the proposed method

Algorithm Baseline Method Proposed Method Percent Improvement
Pay Exit Count 5,562 5,562
Regular Count 60,812 60,812
Pay Exit Inferred 0 4,504 7%
Regular Inferred 46,507 51,919 8%
Total Tag Count 66,374 66,374
Total tags inferred 46,507 (70%) 56,423 (85%) 15%

Note: The percentage improvement is calculated with respect to the total number of tags (i.e. 66,
374)

The selection of the most likely trajectory based on the highest probability may result475

in accumulation of the inference error if there are multiple likely trajectories instead of a476

dominant one. In order to check for this possibility, we calculated the percentage difference477

between the probabilities of the first and the second (if exists) most likely trajectories for478
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every tag. The percentage difference is calculated with respect to the highest probability. A479

histogram of the percentage difference of these probabilities is shown in Figure 5. We found480

that more than 95% of the values were greater than 19% difference. To test if there exist481

a significant number of trips with multiple likely trajectories, we extracted 5% of the trips482

from lower tail of the distribution (shown by the dashed line) to compare the means of the483

probabilities of the first and the second most likely trajectories. We used the paired two484

sample T-test to compare the means.485

Figure 5: Distribution of the percentage difference between the probabilities of the first and the second (if
exists) most likely trajectories

H0 :µfirst = µsecond

H1 :µfirst 6= µsecond

(11)

We found a T-statistic value of 24.383 which is greater than the critical value at 99%486

confidence level. This rejects the null hypothesis that the means of the probabilities of the487

first and second most likely trajectories are equal. We recommend to perform this test to488

check the quality of the results. If there exists a significant number of trips with multiple489

likely trajectories, then we either should consider all the likely trajectories for that tag or490

choose a trajectory randomly from the set of likely trajectories.491

492

It is difficult to validate the trip chaining results for an open transit system because of493

the lack of ground truth data available to compare the results. We use the transit on-board494
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survey data from 2016 to compare the total number of boarding and alighting on different495

stops of a route. The on-board survey (OBS) collects data from individuals about their496

travel itinerary such as origin and destination of the trip, boarding and alighting stops,497

route, transfer information, etc. Then an expansion factor is used to expand the survey498

for the total boarding and alighting counts obtained from the APC data. We analyzed the499

high ridership routes such as route 2, 3 and Metro Green Line for this purpose. The overall500

proportion of the boarding and alighting on different stops of these routes were similar. The501

results for route 3 in eastbound direction is presented in Figure 6. We can observe that502

the boarding proportions (Figure 6(a)) are almost similar at every stop except few stops.503

Figure 6(b) shows the comparison of alighting proportion at different stops. The pattern504

in alighting looks similar but the difference is quite high for some of the stops. We believe505

that the error in the boarding and alighting proportions is caused by the low sampling rate506

and possibly inaccurate boarding and alighting stops from the on-board survey. Wang et al.507

2011 also faced similar challenges to use OBS for validation purposes. We also compared508

the number of transfers made by the passengers to assess the accuracy of transfer inference.509

We found the proportion of transfers similar to on-board survey. For example, for route 3510

eastbound, the results shows 3.6 % transfers using the proposed algorithm in comparison to511

3.5 % and 10.3 % using the on-board survey data and the AFC system respectively.512

6.2. Applications using the inferred results513

To summarize the outputs, heat maps of trip origins and destinations are prepared (Figure514

7). The maps show that during morning peak hours, most of the trips originate from the515

areas east of the campus, Downtown and southwest Minneapolis, Downtown St. Paul, area516

around the university campus and Metro Green Line, while trip destinations are mainly at517

the university campus. Looking at the results for the evening peak hours, the origins and518

destinations look reversed, where most trips begin from the university campus and end at519

popular morning origin locations.520

521

We compared the route ridership to assess the most common transit routes used by522

university students. Table 4 shows the high ridership routes and stops. In this table, as523

expected Metro Green Line has the highest ridership as it connects Downtown Minneapolis524

and Downtown St. Paul via university campus through two stations, East Bank Station525

and West Bank Station, which are also the popular locations for boarding and alighting in526

the stop table. Route 2 and route 3 are the most common bus routes used by the univer-527

sity students who live close to the campus. Route 3 connects Downtown Minneapolis and528

Downtown St. Paul via university by serving areas around the campus. Route 6, route529

114 and route 113 serve the southwest suburbs while route 465 and 87 serve the southern530

suburbs. It is interesting to see that many students from suburbs use bus to commute to531

the campus. In the stop table (Table 4), stops located in the university campus such as532

East Bank Station, Pleasant Street & Jones Hall, West Bank Station, Washington Avenue533

& Coffman Union and Washington Avenue & Oak Street SE show high ridership. Other534

high ridership stops shown in the table are Metro Green Line stations. Finally, 15th Av-535

enue SE and Como Avenue is also a popular stop for boarding and alighting served by route 3.536

537
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(a) Comparison of route 3 eastbound
boarding proportions

(b) Comparison of route 3 eastbound
alighting proportions

Figure 6: Comparison of boarding and alighting proportions from on-board survey and inferred results for
route 3 in eastbound direction
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(a) Origins in morning peak (b) Destinations in morning peak

(c) Origins in evening peak (d) Destinations in evening peak

Figure 7: Intensity of trip origins and destinations. (For interpretation of colors in this figure, the reader is
referred to the web version of this article.)

The highest number of tags was made on the Metro Green Line stations for which we did538

stop level origin-destination analysis. In Figure 8(a), we can observe that in the morning539

peak and eastbound direction, most trips start from Downtown Minneapolis at the western540

end of the line to the East Bank and West Bank Stations on the university campus or from541

Downtown St. Paul Union Depot (Figure 8(b)) at the eastern end of the line to the East542

Bank Station. Most of the students commute from the stations east of campus, for example543

Stadium Village, Prospect park and Westgate which are closer to the university. Conversely,544

during the evening peak, most trips go from East Bank and West Bank Stations to the545

popular origin locations in the morning (Figure 8(c) and Figure 8(d)).546

6.3. Discussion547

In this section, we discuss the possible ways to infer the non-inferred tags. The proposed548

method infers the boarding and alighting of the tags made by the passenger during the day549

based on the assumptions given in section 2. If these assumptions are not satisfied, then550

it cannot infer the boarding and alighting location of a given tag. Such trips (tags) are551

called unlinked trips (He and Trépanier 2015). The inference of such trips is possible using a552
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Table 4: Routes and stop locations with high ridership

Route Ridership Stop/Station Boarding Alighting

Metro Green Line 22,144
East Bank Station
& Platform

7,052 7,314

3 12,213 Pleasant St & Jones Hall 3,423 3,265
2 6,340 Stadium Village Station & Platform 2,928 2,783
6 3,014 West Bank Station & Platform 2,924 2,723
465 2,274 Washington Ave & Coffman Union 1,637 2,006
114 1,569 Westgate Station & Platform 1,441 1,280
113 1,207 15th Ave SE & Como Ave SE 1,105 1,013
901 1,126 Washington Av & Oak St SE 971 971
87 1,073 Prospect Park Station & Platform 923 828

698 794
Warehouse Hennepin Ave Station &
Platform

714 626

method proposed by He and Trépanier 2015, which assumes that passengers tend to follow the553

same routine, and the historical alighting location and time information can be used to infer554

the alighting location of an unlinked trip. The method extracts the historical destinations555

for a passenger and tries to estimate the probability of alighting on these locations. The556

probability is found using spatial and temporal proximity of the historical alighting and the557

potential alighting. The method can be used in our case for the regular tags. We need to558

repeat the procedure of finding the spatial and the temporal probabilities for all the possible559

trajectories found for a given tag. However, the method may not be useful for the pay-exit560

cases. For example, for a commuter who takes a regular route in the morning and pay-exit561

route in the evening, there will be no historical alighting and boarding location for the current562

and the next tag location respectively. Another disadvantage of combining the method563

proposed by He and Trépanier 2015 and the proposed method is heavy computational time564

as the spatial and temporal probabilities need to be calculated for each possible trajectory.565

Transit agencies require full O-D matrix for all the trips made by users given the errors566

and the missing information. This can be achieved using the boarding and alighting count567

data available from APC data. The O-D matrix obtained from AFC data using trip chaining568

algorithm can be used as a seed or prior matrix in optimization methods proposed by Van569

Zuylen and Willumsen 1980 or Spiess 1987. These optimization methods promise to perform570

better with a good quality seed matrix, which we can obtain from the trip chaining results.571

Another possibility is to proportionally assign the non-inferred boarding and alighting based572

on the APC data. Although these methods may not infer the correct boarding and alighting573

on an individual level, they will improve the results on an aggregate level.574

7. Conclusions and Recommendations for Future Research575

This research proposes a robust method for trip chaining of transit smart card data,576

which tries to relax various assumptions on the parameters used in the existing trip chaining577

algorithms. The parameters can vary according to the quality of data and user behavior in578

different transit systems, so a fixed value cannot be assumed for different transit systems.579
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(a) Flow of passengers in the morning peak in the
eastbound direction

(b) Flow of passengers in the morning peak in the
westbound direction

(c) Flow of passengers in the evening peak in the
eastbound direction

(d) Flow of passengers in the evening peak in the
westbound direction

Figure 8: Passenger origin-destination flow on Metro Green Line light rail. (For interpretation of colors in
this figure, the reader is referred to the web version of this article.)

This is evident from trip chaining results for the Twin Cities AFC data. The proposed580

method provides the flexibility to assume a higher value for these parameters to avoid wrong581
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inference of origin and destination.582

583

The method uses probability distributions for potential boarding stop location, bus de-584

lay and passenger’s route choice behavior. By combining these probabilities, it infers the585

most likely trajectory of the passenger. Though being an open transit system with pay-exit586

buses and sub-routes, these attributes create various problems for trip chaining. Using the587

proposed method, various problems such as erroneous GPS locations, selection of wrong trip588

for inference, and pay-exit cases are addressed. The proposed algorithm can also be suitably589

modified to deal with different pay exit cases.590

591

The O-D matrix results can be used in multiple ways to understand the travel behavior592

of passengers in a transit system. We presented the ridership analysis on an aggregate level593

for the Twin Cities and also the route level analysis for a light rail transit line. We can594

also use the trip chaining results by creating clusters of customers based on their regularity595

in using transit system. These results can inform planners for better decisions to improve596

transit services.597

598

Current research can be expanded in multiple directions. The case where the current599

tag is regular and the next tag is pay-exit and both tags use the same route is analyzed600

using a method of proportions. Additional information from other data sources can help in601

development of a suitable algorithm for this case. The results obtained from trip chaining602

can be used for other research such as trip purpose inference, analyzing spatial and temporal603

travel pattern, route choice behavior analysis of passengers and transit assignment models.604
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He, L. and Trépanier, M. 2015, ‘Estimating the Destination of Unlinked Trips in Transit657

Smart Card Fare Data’, Transportation Research Record: Journal of the Transportation658

Research Board 2535, 97–104.659

Hunt, J. D. 1990, ‘A Logit Model of Public Transport Route Choice’, ITE Journal Decem-660

ber, 26–30.661

Ingvardson, J. B., Nielsen, O. A., Raveau, S. and Nielsen, B. F. 2018, ‘Passenger arrival and662

waiting time distributions dependent on train service frequency and station characteris-663

tics: A smart card data analysis’, Transportation Research Part C: Emerging Technologies664

90(September 2017), 292–306.665

Khani, A. 2018, ‘Transit Demand Analysis and User Classification Using Automatic Fare666

Collection (AFC) Data’, TREC Friday Seminar Series 144.667

URL: https://pdxscholar.library.pdx.edu/trec seminar/144668

Kim, J., Corcoran, J. and Papamanolis, M. 2017, ‘Route choice stickiness of public transport669

passengers: Measuring habitual bus ridership behaviour using smart card data’, Trans-670

portation Research Part C: Emerging Technologies 83, 146–164.671

Kumar, P., Khani, A. and He, Q. 2018, A Probabilistic Trip Chaining Algorithm for Transit672

Origin-Destination Matrix Estimation Using Automated Data, in ‘Transportation Re-673

search Board Annual Meeting 2018’.674

Kusakabe, T. and Asakura, Y. 2014, ‘Behavioural data mining of transit smart card data: A675

data fusion approach’, Transportation Research Part C: Emerging Technologies 46, 179–676

191.677

Lee, S. G. and Hickman, M. 2014, ‘Trip purpose inference using automated fare collection678

data’, Public Transport 6(1-2), 1–20.679

Li, J. Q. 2012, ‘Match bus stops to a digital road network by the shortest path model’,680

Transportation Research Part C: Emerging Technologies 22, 119–131.681

Li, T., Sun, D., Jing, P. and Yang, K. 2018, ‘Smart Card Data Mining of Public Transport682

Destination: A Literature Review’, Information 9(1), 18.683

Luo, D., Cats, O. and van Lint, H. 2017, ‘Constructing Transit Origin–Destination Matrices684

with Spatial Clustering’, Transportation Research Record: Journal of the Transportation685

Research Board 2652, 39–49.686

Ma, X.-l., Wang, Y.-h., Chen, F. and Liu, J.-f. 2012, ‘Transit smart card data mining687

for passenger origin information extraction’, Journal of Zhejiang University Science C688

13(10), 750–760.689

27



Ma, X., Wu, Y. J., Wang, Y., Chen, F. and Liu, J. 2013, ‘Mining smart card data for transit690

riders’ travel patterns’, Transportation Research Part C: Emerging Technologies 36, 1–12.691

Munizaga, M. A. and Palma, C. 2012, ‘Estimation of a disaggregate multimodal public692

transport Origin-Destination matrix from passive smartcard data from Santiago, Chile’,693

Transportation Research Part C: Emerging Technologies 24, 9–18.694

Nassir, N., Khani, A., Lee, S., Noh, H. and Hickman, M. 2011, ‘Transit Stop-Level Origin-695

Destination Estimation Through Use of Transit Schedule and Automated Data Collection696

System’, Transportation Research Record: Journal of the Transportation Research Board697

2263, 140–150.698

Navick, D. and Furth, P. 2002, ‘Estimating passenger miles, origin-destination patterns, and699

loads with location-stamped farebox data’, Transportation Research Record: Journal of700

Journal of the Transportation Research Board 107-113(02), 2466.701

Navy, R. 2008, ‘Admiralty manual of navigation: The principles of navigation, volume 1’.702

Newson, P. and Krumm, J. 2009, ‘Hidden Markov Map Matching Through Noise and Sparse-703

ness’, 17th ACM SIGSPATIAL International Conference on Advances in Geographic In-704

formation Systems pp. 336–343.705

Pelletier, M. P., Trépanier, M. and Morency, C. 2011, ‘Smart card data use in public transit:706

A literature review’, Transportation Research Part C: Emerging Technologies 19(4), 557–707

568.708

Perrine, K., Khani, A. and Ruiz-Juri, N. 2015, ‘Map-Matching Algorithm for Applications in709

Multimodal Transportation Network Modeling’, Transportation Research Record: Journal710

of the Transportation Research Board 2537(2537), 62–70.711

R Core Team 2017, ‘R: A language and environment for statistical computing. R Foundation712

for Statistical Computing, Vienna, Austria’.713

URL: https://www.r-project.org/714
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