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Abstract

Most public transportation services deviate from their published schedule. To cope with the delay

caused by the unreliable service, passengers use online information about the bus arrival time which

affects their route choice behavior. Current schedule-based transit assignment models fail to cap-

ture the passengers’ adaptive response to unreliable service, resulting in an inaccurate estimation

of passenger wait time and passenger loads on various transit routes. The current study proposes

schedule-based transit assignment models that incorporate online bus arrival information when

modeling the passenger route choice in a stochastic and time-dependent transit network. The au-

thors propose that passengers employ strategies when traveling between different origin-destination

pairs not only due to the limited capacity of vehicles but also to cope with the transit delay. The

passenger routing problem is modeled as a Markov Decision Process, and efficient algorithms are

developed to solve this problem. Depending on the vehicle capacity, two types of assignment

models are presented, namely, uncapacitated and capacitated assignments. When penalties for ar-

riving at the destination outside the desired arrival time window are not applied, the uncapacitated

assignment problem is formulated as a linear program. On the other hand, the capacitated assign-

ment is formulated as a variational inequality problem for which an efficient Method of Successive

Averages-based heuristic solution algorithm is proposed. Computational experiments are presented

for a small and a large schedule-based transit network. The results show that denied boarding in

an unreliable network leads to higher expected costs to passengers compared to the reliable and

uncongested network. Furthermore, the analysis shows that the strategies evaluated with reliable

schedule assumption lead to unreliable paths in the network and produces more transferring flow

than should happen in practice. The application of our method to a subnetwork of the Twin Cities

transit network with artificial demand reveals that passengers traveling from a residential area to

the University of Minnesota campus may prefer taking a path with transfer in the event of highly

unreliable transit service on the direct routes.
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1. Introduction1

Transit network assignment is a discipline whereby network models are conceptualized, designed,2

and calibrated to reflect the system-side and user-side behavior within a transit network. There are3

two classes of transit assignment models, namely, frequency-based (FB) (Spiess and Florian 1989)4

and schedule-based (SB) (Hamdouch and Lawphongpanich 2008) models. The FB models assume5

a static representation of a transit network and are useful for long-term planning operations such as6

frequency design, etc. On the other hand, SB models assume a dynamic representation of a transit7

network and are useful for short-term planning operations such as time-tabling, vehicle scheduling,8

etc. The SB assignment is the topic of the current study.9

10

Current SB assignment models assume the timely arrival of buses at stops. However, in reality,11

bus travel time is subject to uncertainty due to road congestion (since buses use the same right of12

way as cars), traffic signals, inclement weather, varying dwell times, and maintenance disruptions.13

This uncertainty causes early/late arrival of buses at stops, which results in the possibility of miss-14

ing transfers by passengers flowing in the network. For example, in Minneapolis-St. Paul, on a15

typical day, around 10% of transfers failed due to either early/late transit arrival at stops during16

peak-hours (Kumar and Khani 2019). Moreover, to avoid extra waiting time caused by early/late17

arrival of buses, it is common for passengers to use online information about the bus arrival time at18

different stops to make adaptive decisions en-route in this stochastic and dynamic system (Webb19

et al. 2020). For example, Islam and Fonzone 2021 surveyed passengers in Edinburgh, UK and20

found that more than 56% passengers used real-time bus arrival information, half of which changed21

at least one aspect of their trip, including changing their departure time from the origin (29%),22

boarding time (21%), boarding stop (13%), bus route (15%), and alighting stop (5%). Similar23

findings were also reported by Fonzone 2015. A literature review on the benefits of providing real-24

time bus arrival information by Brakewood and Watkins 2019 reveals a reduction in passenger wait25

times, a decrease in overall travel time due to changes in path choice, and increased satisfaction26

with public transit usage and security. However, the current SB assignment models fail to cap-27

ture the adaptive passenger response to unreliable service, which causes an inaccurate estimation28

of passenger wait time and passenger loads on various transit routes (Fonzone and Schmöcker 2014).29

30

The current research proposes SB transit assignment models that incorporates online bus ar-31

rival information when modeling the passenger route choice in a stochastic and time-dependent32

(STD) transit network. We propose that passengers employ strategies when traveling between an33

origin-destination pair. These strategies are not only motivated by the limited capacity of vehicles34

(as in the current SB assignment models) but also due to the use of online information for making35

adaptive decisions en-route in the STD transit network. We formulate the route choice problem36

as a stochastic shortest path (SSP) problem whose solution give us optimal strategy/policy that37

describe the adaptive passenger behavior in the network. The passenger assignment uses these38

strategies to predict flow on various transit routes in the network. Based on the capacity limits of39
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transit vehicles, the current study proposes two types of assignment models, namely, uncapacitated40

and capacitated assignment models. The uncapacitated assignment assumes the unlimited capacity41

of vehicles, whereas capacitated assignment enforces the capacity of transit vehicles when assigning42

passengers. Through this research, we envisage a more realistic SB transit assignment.43

44

2. Related work45

Transit assignment has attracted a lot of attention since the 1970s, and various models have46

emerged over the years. Chriqui and Robillard 1975 posed the decision problem, also known as47

common lines problem, faced by a passenger traveling between two stops served by several transit48

routes. Spiess and Florian 1989 proposed that passengers adopt strategies when traveling, which is49

defined as a set of rules that help a passenger to move from an origin to a destination in a transit50

network. They proposed the first FB transit assignment model formulated as a linear program.51

Further, Nguyen and Pallottino 1988 formalized any strategy as a sub-network between two nodes52

in the transit network, known as a hyperpath and proposed a greedy algorithm to find the shortest53

hyperpaths in the network. It was soon realized that current models could not predict passenger54

behavior in congested FB networks. Therefore, several approaches are proposed by the researchers55

to model congestion in the network. This includes asymmetric BPR-type function of waiting by Wu56

et al. 1994 and De Cea and Fernández 1993, effective frequency function by Cominetti and Correa57

2001 and Cepeda et al. 2006, and failure-to-board probabilities by Kurauchi et al. 2003. A multi-58

modal FB assignment model was proposed by Kumar and Khani 2022. The FB models consider59

single vehicle runs, which results in an approximation of accurate vehicle loads for a time-dependent60

transit service (Nuzzolo et al. 2012). Therefore, schedule-based or dynamic transit assignment mod-61

els emerged in the literature. Nguyen et al. 2001 presented a graph-theoretic framework for the62

SB transit network, Tong and Wong 1999 proposed a SB transit assignment model based on the63

schedule-based transit shortest path algorithm developed by Tong and Richardson 1984, and Poon64

et al. 2004 proposed a simulation-based assignment model with FIFO queuing discipline. To model65

congestion into SB models, studies have used a BPR-type discomfort function for in-vehicle links66

(Crisalli 1970, Nielsen 2004, Nuzzolo et al. 2001). The main drawback of this approach is that67

discomfort is applied to all the passengers in a bus (both seating and standing), and the assign-68

ment results may not satisfy the strict capacity of transit vehicles. Hamdouch et al. 2004 and69

Hamdouch and Lawphongpanich 2008 proposed that passengers adopt strategies in a SB network70

when competing with other passengers for limited vehicle capacity. They proposed an assignment71

model based on the User Equilibrium principle. The logit-based strategic SB transit assignment72

was proposed by Nuzzolo et al. 2012, Noh et al. 2012, and Khani et al. 2015. Various studies have73

also used strategy-based models for the capacitated traffic assignment problem (Marcotte et al.74

2004, Zimmermann et al. 2021). As seating and standing passengers have different comfort costs,75

SB assignment models have also incorporated the effect of discomfort on strategies (Sumalee et al.76

2009, Hamdouch et al. 2011, Binder et al. 2017).77
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78

There has been a significant amount of work on the adaptive traveler routing problem in a road79

network with random travel times. In this problem, the traveler has to make online choices based on80

the sum of current costs and future expected costs. Hall 1986 showed that the online shortest path81

in a network with random travel times cannot be found using the conventional shortest path meth-82

ods and requires the computation of adaptive decision rules. Therefore, efficient algorithms have83

been developed for various variants of this problem based on different assumptions on modeling the84

stochasticity in travel time. This includes recursive algorithms by Polychronopoulos and Tsitsiklis85

1996, Andreatta and Romeo 1988 and Gao et al. 2008, label setting algorithms by Miller-Hooks86

and Mahmassani 2003, label correcting algorithms by Cheung 1998 and Waller and Ziliaskopoulos87

2002, a primal-dual algorithm by Provan 2003, and value iteration, linear programming, and policy88

iteration algorithms by Polychronopoulos and Tsitsiklis 1996 and Kumar and Khani 2021. It is89

common for passengers to use adaptive decision rules for navigating in the transit network. A90

passenger waiting at a bus stop served by several bus routes employs strategies to minimize the91

travel cost (Chriqui and Robillard 1975, Spiess and Florian 1989). The strategies are affected by the92

online information, and various studies have proposed FB assignment models incorporating online93

information (Gentile et al. 2005, Billi et al. 2004, Chen and Nie 2015, Oliker and Bekhor 2018). In94

the case of SB assignment, Hamdouch et al. 2014 developed an assignment model that incorporates95

the passengers’ response to unreliable service by finding the strategies that minimize the sum of96

mean and variance of overall travel cost. Zhang et al. 2010 models the risk-taking behavior of pas-97

sengers in SB networks with random arc travel time using chance constraints. Gardner et al. 202198

presented an estimation method for evaluating passenger travel time distributions in unreliable99

transit networks using phase-type distributed Markov chains. Rambha et al. 2016 formulated the100

transit shortest path problem with online information as a finite horizon Markov Decision Process101

and presented several procedures based on variants of the time-dependent shortest path problem102

to decrease the computational time of evaluating routing strategies. Hickman and Wilson 1995103

and Hickman and Bernstein 1997 proposed path choice models for modeling passenger behavior104

of declining a bus route in favor of a faster bus route arriving at a stop based on online informa-105

tion. Khani 2019 proposed an efficient labeling algorithm to find strategies in a trip-based dynamic106

transit network considering the reliability of transfers. Other approaches include model-free rein-107

forcement learning-based SB assignment model by Wahba and Shalaby 2009, and simulation-based108

models incorporating real-time information by Nuzzolo et al. 2016 and Cats and Gkioulou 2017.109

110

The above studies have made valuable contributions to modeling the effect of real-time informa-111

tion on transit passenger routing. However, several gaps motivate us to pursue the current research.112

They are discussed below:113

1. A common approach for modeling passenger response to unreliable transit service is through114

evaluating strategies with the least mean-variance cost. However, this approach does not115

model the complexity associated with missing transfers. If buses are late, passengers miss116
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transfers and might take alternative bus routes. Therefore, the shortest path with recourse117

problem in SB transit networks needs to be solved (Hall 1986, Andreatta and Romeo 1988).118

2. There is no efficient method that solves the current problem in a reasonable amount of time119

and is scalable for large-scale SB transit networks.120

To address the above issues, we develop a transit assignment model that employs strategies to121

describe the online routing behavior of passengers in a network with random bus arrival times at122

various stops and a limited capacity of vehicles. For this purpose, we use the traffic equilibrium123

framework proposed by Marcotte et al. 2004 and Baillon and Cominetti 2008 that formulates pas-124

senger route choice as a sequential decision-making problem. As their framework only deals with125

uncertainties associated with link availability and passenger perception of travel time in a static126

auto network, the current research proposes a generalized model that incorporates uncertainties127

due to both unreliable bus service and limited vehicle capacity in a time-dependent transit network.128

We define a stochastic shortest path (SSP) framework with a state incorporating the passenger’s129

current location, time, and information about the bus arrival time and capacity of vehicles to130

evaluate their strategy. The structure of the problem allows us to solve the SSP efficiently. We131

pose the capacitated assignment problem as a variational inequality problem for which an efficient132

MSA-based solution heuristic is proposed that runs SSP and a dynamic network loading algorithm133

to reach an equilibrium solution. Unlike previous studies on schedule-based transit assignment that134

maintains the flow vector based on a specific strategy for an origin-destination pair, the current135

research maintains the link flow vector based on local choice probabilities for each destination. Dur-136

ing the passenger assignment phase, it takes the convex combination of local probabilities rather137

than shifting the flow from various strategies of an origin-destination pair to the shortest expected138

cost strategy. In this way, we do not have to maintain the list of active strategies (Hamdouch et al.139

2014). This difference is akin to a path-based versus link-based algorithm for solving the traffic140

assignment problem.141

142

The rest of the article is structured as follows. The next section (Section 3) introduces the143

notations and concepts used throughout the paper. After that, Section 4 formulates the assignment144

problem for uncapacitated networks, which is followed by the capacitated assignment model in145

Section 5. Then, numerical experiments are presented in Section 6. Finally, the conclusions and146

directions for future research are discussed in Section 7.147

3. Preliminaries148

We start by discussing the creation of a SB (read as ”schedule-based”) transit network and149

introducing a few notations that we use throughout the paper. A SB transit network is character-150

ized by a digraph G(N,A), where N denotes the set of nodes and A denotes the set of links in the151

network. We use the trip-based representation of the transit network (Khani et al. 2014), which152
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is created using the General Transit Feed Specification data (Google 2005). The probability dis-153

tributions of link travel times are calibrated using Automatic Vehicle Location (AVL) data, which154

provides historical bus arrival times at various stops recorded using GPS devices installed in transit155

vehicles (Riter and McCoy 1977).156

157

For the dynamic representation of the network, let us consider T as the set of integer-valued158

time intervals during the study period. In transit schedule data, we denote the set of transit159

stops/stations as B, set of bus routes as R, and set of transit trips as K. Each trip k ∈ K is160

characterized by a bus route rk ∈ R, set of nodes1 Bk ⊂ B × K, sequence γk : Bk 7→ N in161

which various stops are visited, scheduled arrival/departure time t̂k : Bk 7→ T at various stops162

in the itinerary, and a set of possible (actual) arrival time at those stops t̃k : Bk 7→ 2T , which is163

obtained from the AVL data. The probability of a bus associated to trip k arriving at node i ∈ Bk164

at time t ∈ t̃k(i) is denoted by p̃i(t). For a well-defined probability distribution, we must have165

p̃i(t) ≥ 0,∀t ∈ t̃k(i),∀i ∈ Bk, ∀k ∈ K and
∑

t∈t̃k(i) p̃i(t) = 1,∀i ∈ Bk, ∀k ∈ K. Overall, the set of166

nodes in the network N = O∪D∪B can be partitioned into three subsets, namely, the set of origins167

O (from where passenger trips start), the set of destinations D (where passenger trip ends), and168

the set of transit nodes B = ∪k∈KBk. Let k(i) and r(i) be the trip and route resp. associated to169

transit node i ∈ B and w : N×N 7→ R be the walking time between two nodes in the network. The170

passenger demand is assumed to be distributed among groups G. Each group of passengers g ∈ G is171

characterized by an origin og ∈ O, a destination dg ∈ D, the earliest departure time from the origin172

tED
g , the earliest arrival time at the destination tEA

g , and the latest arrival time at the destination173

tLAg . Let {dodg }(o,d)∈O×D,g∈G be the demand matrix from origin to destination for different groups.174

There are three types of links A = Aa∪Av ∪At in the network, namely, the access/egress links Aa,175

the in-vehicle links Av, and the walking/waiting transfer links At. The access/egress links are used176

to access/egress transit nodes in the network, i.e., Aa = {(i, j) ∈ O × B | w(i, j) ≤ δ0} ∪ {(i, j) ∈177

B × D | w(i, j) ≤ δ1}, where δ0 and δ1 are the acceptable walking times to access and egress a178

transit stop. The in-vehicle links are transit vehicle links created using the itinerary of a transit179

trip, i.e., Av = {(i, j) ∈ B×B | k(i) = k(j), γk(j)(j) = γk(i)(i)+1}. Finally, the waiting and walking180

transfer links are created between two nodes i, j ∈ B if they satisfy the following conditions:181

1. Routes associated to both nodes are different, i.e., rk(i) ̸= rk(j).182

2. The stop associated to node i is not the first stop in k(i)’s itinerary, i.e., γk(i)(i) ̸= 1183

and the stop associated to node j is not the last stop in k(j)’s itinerary, i.e., γk(j)(j) ̸=184

maxl∈Bk(j)
γk(j)(l).185

3. Walking time between i and j is less than or equal to an acceptable walking time limit δ2,186

i.e., w(i, j) ≤ δ2.187

1Here, a node is characterized by a stop and bus trip serving it.
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Let us denote A
′
t as the set of links that satisfy the above conditions. Sometimes, condition 3 needs188

to be relaxed when a bus (for transfer) is not available at stop i (e.g., after midnight) or so late189

that walking to the respective destination becomes a better choice. The above conditions create190

unlikely transfer links, which can be further reduced using some criterion specific to the type of191

assignment (capacitated or uncapacitated). The criteria are based on maximum acceptable wait192

time δ3 and probability of making a successful transfer. δ3 is the maximum waiting time that a193

passenger is willing to spend to access transit service. Moreover, we assume that if the waiting time194

exceeds δ3 for a passenger, then the optimal choice for the passenger is to walk to her destination.195

The value of δ3 should not be too low to exclude any reasonable choice and should not be too high196

to create enormous transfer links. The passenger survey data can help us calibrate this value. To197

avoid interruption in the main focus of this article, we continue this discussion in Appendix A,198

where a pseudo code is provided to obtain the final transfer links. Let us denote the forward and199

backward stars of node i ∈ N as FS(i) and BS(i) respectively. Before describing the model, we200

make the following assumptions:201

3.1. Assumptions202

1. The vehicle arrival and departure times at stops are assumed to be the same, i.e., no dwell203

time is assumed.204

2. The walking time on access, egress, and walking transfer links is integer-valued and constant.205

3. The travel and wait time associated with in-vehicle and transfer links respectively are assumed206

to be time-varying discrete random variables with finite support.207

4. The travel time or wait time on various links is assumed to be independent across time208

periods. Further, the travel time is assumed to be independent across trips and routes, and209

bus bunching is ignored.210

5. Passengers are provided with online information about the bus arrival time at every node of211

the network.212

6. At a node, passengers use online information about only those bus routes which are accessible213

from that node by an acceptable walking distance.214

7. The online information about the bus arrivals provided to any passenger is one of the real-215

izations obtained from the historical data.216

8. Passengers decide which bus route to board as soon as they arrive at a particular node.217

9. Passengers are expected-cost minimizers. The ”optimal” policy/strategy minimizes the ex-218

pected cost of traveling between an origin-destination pair.219

10. The walking, waiting, and in-vehicle travel times are equally weighed in the cost to passengers.220
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11. Passengers can coordinate the departure time from their origin based on the online information221

about the bus arrival at various stops to avoid waiting time. Therefore, no latest departure222

time penalty is assumed.223

12. The transit network is connected.224

13. The assignment models compute the average flow of passengers on every link of the schedule-225

based transit network.226

Some of the assumptions are non-restrictive and can be easily relaxed. Assumption 1 can227

be relaxed by including dwell time in the cost of in-vehicle links. Assumption 5 is also not a228

concern as nodes without online information can have average deterministic costs for outgoing229

links. Assumptions 4 and 6 are needed to avoid enormous state space in the stochastic shortest230

path problem. The correlations in travel time can be considered by assuming realizations of the231

travel time on every link in the network. However, the corresponding stochastic shortest path232

problem is NP-hard (e.g., see Polychronopoulos and Tsitsiklis 1996, Provan 2003). One can relax233

Assumption 6 by including online information about all the bus routes in the state space and234

developing a solution algorithm that evaluates more intelligent routing policies in the network235

at the expense of computational time (e.g., see Rambha et al. 2016). However, such algorithms236

are more suited for providing routing policies to passengers through cellphone applications. For237

assignment purposes, we believe this is a reasonable assumption and can aid in developing faster238

algorithms. Since the assignment uses historical bus arrival data to calibrate the link travel time239

distributions, it is necessary to state Assumption 7 because the model would not be able to explain240

the adaptive response of passengers for the bus arrival times realizations other than what is recorded241

in the historical data. The relaxation of Assumption 8 would require formulating a dynamic path242

choice problem similar to Hickman and Bernstein 1997, which we leave for us to explore in future243

work. Assumptions 2-3, 7, and 9-12 are required for modeling purposes. Finally, the Assumption244

13 reveals the objective of the passenger assignment in the current study. It computes the average245

passenger flow on each link of the SB transit network rather than the flow for a particular realization246

of the network. For example, if we know the state of the network on a particular day, then we can247

perform the assignment of passengers in a deterministic fashion (Paulsen et al. 2021). We believe248

that an average flow of passengers computed based on the historical states of the network will aid249

in evaluating the long-term congestion in the network.250

3.2. Characterization of online information251

The random bus arrival time at various nodes induces a node-dependent stochasticity as when252

a passenger arrives at node i ∈ N at time t ∈ T , an online information vector θ is revealed to them.253

This information vector consists of travel cost {cθij}j∈FS(i) of outgoing links from node i (Gao and254

Huang 2012, Boyles and Rambha 2016). Let Θi(t) be the set of possible information sets at node255

i and time t. For an information vector θ ∈ Θi(t) associated to the head node i of a transfer or256
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access link, the travel cost of a transfer link (i, j) for a possible arrival of bus at node j ∈ FS(i) at257

tj ∈ t̃k(j)(j) is given as:258

cθij =

tj − t, if t+ wij ≤ tj

∞, otherwise
(1)

The probability of observing θ ∈ Θi(t) is denoted by pθ. For this probability distribution, we259

must have, pθ ≥ 0,∀θ ∈ Θi(t),∀t ∈ t̃k(i)(i), ∀i ∈ N and
∑

θ∈Θi(t)
pθ = 1,∀t ∈ t̃k(i)(i),∀i ∈ N . Let us260

denote Θ = ∪i∈N ∪t∈T Θi(t) as the union of all node-time information sets.261

3.3. Example262

To better understand the problem setting, let us consider an illustrative example provided263

in Figure 1. It shows two trips K = {1, 2} of different transit routes going from stop A to264

C and E to C respectively. There are three in-vehicle nodes B = {A1, B1, C1, E2, D2, C2}, one265

origin node O = {o}, and one destination node D = {d}. There are four in-vehicle links Av =266

{(A1, B1), (B1, C1), (E2, D2), (D2, C2)}, four access/egress linksAa = {(o,A1), (o,E2), (C1, d), (C2, d)},267

and one transfer link At = {(B1, D2)}. The random link travel time of in-vehicle links or walk time268

of access/egress/transfer links is shown by the links in the figure. Assume that buses of trips 1269

and 2 begin their journey at their commencing stop at time t = 0. Then, the possible arrival times270

of different trips at different nodes with their probabilities are given as: t̃1(A1) = 0 w.p. 1.0,271

t̃2(E2) = 0 w.p. 1.0, t̃1(B1) =

{
2, w.p. 0.6

8, w.p. 0.4

}
(which means that trip 1 arrives at node B1272

at time 2 with probability 0.6 and at time 8 with probability 0.4), t̃2(D2) =


3, w.p. 0.2

5, w.p. 0.3

10, w.p. 0.5

,273

t̃1(C1) =

{
17, w.p. 0.6

23, w.p. 0.4

}
, t̃2(C2) =


16, w.p. 0.2

18, w.p. 0.3

23, w.p. 0.5

, where w.p. means with probability .274

Using the arrival time information, the set of online information vectors at various nodes can be275

written as: Θo(0) =
[
{0, 0}, w.p. 1.0

]
, ΘA1(0) =

[
{2}, w.p. 0.6

{8}, w.p. 0.4

]
, ΘE2(0) =

 {3}, w.p. 0.2

{5}, w.p. 0.3

{10}, w.p. 0.5

.276

If the trip 1 arrived at B1 at t = 2, then possible information a traveler can receive are ΘB1(2) =277 {15, 1}, w.p. 0.2

{15, 3}, w.p. 0.3

{15, 8}, w.p. 0.5

. This is because if trip 1 arrives at time 2, the cost of outgoing link (B1, C1)278

will always be 15, however, the cost of link (B1, D2) depends on the time trip 2 arrives at D2,279

which is 1 w.p. 0.2 , 5− 2 w.p. 0.3, and 10− 2 w.p. 0.5. Similarly, ΘB1(8) =

[
{15,∞}, w.p. 0.5

{15, 2}, w.p. 0.5

]
,280

ΘD2(3) =
[
{13}, w.p. 1.0

]
, ΘD2(5) =

[
{13}, w.p. 1.0

]
, and ΘD2(10) =

[
{13}, w.p. 1.0

]
. At281

C1 and C2, for any possible arrival time, the information set will have a single link with cost of282
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1 w.p. 1.0.283

284

A1 B1 C1

D2

E2

C2

o

d
0

0

1

1

2 w.p.0.6
8 w.p.0.4

15 w.p.1.0

13 w.p
.1.0

1

3 w.p.
0.2

5 w.p.
0.3

10 w.p.
0.5

Transfer link In-vehicle link Access/egress link

Figure 1: An illustrative example to show the stochastic transit network

In what follows, we present two different assignment models, namely, uncapacitated and capac-285

itated assignment models. For each case, we describe algorithms for evaluating optimal strategies286

and assigning passengers to the network.287

4. Uncapaciated assignment288

In this case, we assume that transit vehicles have unlimited capacity. This assignment model289

is applicable for transit systems with low ridership and for which denied boarding due to limited290

capacity is a rare phenomenon.291

4.1. Hyperpaths292

Hall 1986 showed that the least expected cost route in a stochastic and time-dependent transit293

network is not a ”simple” route but a ”strategy/policy” in which arcs are selected based on an294

adaptive rule. Such policy can be evaluated based on the online information about bus arrival295

time and helps passengers make a cleverer choice and improve their overall journey time. For296

example, in case of missed transfers, a passenger can consider an alternative route in their policy297

that provides the least expected cost to her destination. A policy induces a subgraph in the network298

known as hyperpath. A hyperpath, commonly used in FB models, is a collection of paths in the299

network that passenger travels on with positive probability. The current problem of finding an300

optimal hyperpath is formulated as the stochastic shortest path (SSP) problem (Bertsekas 2012).301

These various components characterizing the SSP for a specific destination d ∈ D in case of the302

uncapacitated assignment are described below:303

1. State space: We use the state space description that has been used for static and dynamic304

stochastic shortest path problems by various researchers in the past (Andreatta and Romeo305
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1988, Polychronopoulos and Tsitsiklis 1996, Gao et al. 2008, Boyles and Rambha 2016, Kumar306

and Khani 2021). The state space S ⊆ N×T×Θ describe the possible positions of a passenger307

in space and time and bus arrival information. Each state s ∈ S associated to transit node308

is characterized by a tuple s = (i, t, θ), where i ∈ B represents the node in the network,309

t ∈ t̃k(i)(i) represents the possible arrival time at node i, and θ ∈ Θi(t) represents the online310

information about the cost of links in FS(i) obtained at node i and time t. A state s associated311

to origin node is characterized by s = (o, t, θ), where o ∈ O is the origin node, t ∈ T is the312

possible departure time from the origin, and θ ∈ Θo(t) is the online information vector about313

the cost of outgoing links FS(o) at time t. We also consider one special state known as the314

destination state d, which is an absorbing state.315

2. Action space: When the passenger arrives at a node, they consider the current travel cost316

and the online information about the travel cost on downstream links to move forward. For317

example, at every transfer node, a passenger receives information about the wait time of318

transferring nodes and whether a transfer is missed. Then, she has to decide which available319

action to take next. Therefore, the set of actions for each state (i, t, θ) are given by u(i, t, θ) =320

{j ∈ FS(i) : cθij ̸= ∞} i.e., the set of outgoing links. A stationary policy µ : S 7→ N assigns321

the action to each state. Here, µ(s) ∈ u(s), ∀s ∈ S.322

3. Transition Function: The transition function Pµ : S × S 7→ R corresponding to policy µ is323

defined as Pµ[(i, t, θ), (µ(i, t, θ), t+ cθiµ(i,t,θ), θ
′
)] = pθ

′
, θ

′ ∈ Θµ(i,t,θ)(t+ ciµ(i,t,θ)), θ ∈ Θi(t), t ∈324

T, i ∈ N . The probability of transitioning from d to itself, by taking any action is 1.325

4. One-step costs: The cost of choosing a link (action) j = µ(i, t, θ) at state (i, t, θ) is denoted326

by cθij , where θ ∈ Θi(t).327

5. Expected cost function: Let J : S 7→ R be the expected cost function representing the expected328

cost incurred by a passenger to reach her destination from a possible state.329

The value of optimal cost function J∗ can be obtained by solving the Bellman equation (2)330

(Bertsekas 2012).331

J∗(i, t, θ) = min
j∈u(i,t,θ)

{cθij +
∑

θ′∈Θj(t+cθij)

pθ
′
J∗(j, t+ cθij , θ

′
)}, ∀(i, t, θ) ∈ S (2)

4.2. Finding the optimal policy332

It becomes challenging to solve the Bellman equation (2) when the state space is large. To solve333

it efficiently, we reduce the size of the state space by averaging the uncontrollable components. In334

this case, θ is an uncontrollable component of the state space that does not depend on the action335

taken by the passenger. Therefore, we formulate the problem only on the space of node and time,336

i.e., Ŝ = (N × T ) ∪ {d} with online information vector θ being averaged out.337
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Ĵ∗(i, t) =
∑

θ∈Θi(t)

pθJ∗(i, t, θ) (3)

=
∑

θ∈Θi(t)

pθ min
j∈u(i,t,θ)

{cθij +
∑

θ′∈Θj(t+cθij)

pθ
′
J∗(j, t+ cθij , θ

′
)} (4)

Ĵ∗(i, t) =
∑

θ∈Θi(t)

pθ min
j∈u(i,t,θ)

{cθij + Ĵ∗(j, t+ cθij)}, ∀(i, t) ∈ N × T (5)

The standard methods designed for solving SSP, such as the value iteration (VI), policy iteration338

(PI), etc. can be used for solving the Bellman equation (5). For example, the worst-case complexity339

of running the value iteration algorithm is O(|Ŝ||N ||A|) (Kumar and Khani 2021). However, the340

structure of the current problem allows us to solve the Bellman equation using a more efficient341

label correcting algorithm (Cheung 1998). Kumar and Khani 2021 proved that for any stationary342

policy µ, the associated transition graph is acyclic. The acyclicity property allows us to develop343

a label correcting algorithm for finding the optimal policy, the steps of which are summarized in344

Algorithm 1. The worst-case time computational complexity of running Algorithm 1 is O(|Ŝ||A|)345

(Kumar and Khani 2021).346

Algorithm 1 Label correcting algorithm for uncapacitated assignment

1: procedure ULC(d) ▷ Input: destination d

2: (Initialize) Ĵ(i, t)←∞,∀(i, t) ∈ Ŝ\{d} and Ĵ(d)← 0

3: SE ← BS(d) ▷ Scan Eligible List

4: while SE ̸= ϕ do

5: Remove an element i from SE

6: for t ∈ t̃k(i)(i) do

7: tempJ ← 0

8: for θ ∈ Θi(t) do

9: tempJ += pθ minj∈u(i,t,θ){cθij + Ĵ(j, t+ cθij)}

10: if tempJ < Ĵ(i, t) then

11: Ĵ(i, t)← tempJ ; SE ← SE ∪BS(i)

12: µ∗(i, t, θ)← argmin
j∈u(i,t,θ)

{cθij + Ĵ∗(j, t+ cθij)}, ∀(i, t, θ) ∈ S\{d} ▷ Computing optimal policy

return Ĵ∗, µ∗

The algorithm is similar to the one used for the deterministic shortest path, but in this case,347

we compare the average costs to deal with the uncertainty. It starts by initializing the expected348

cost associated with various states as ∞, except the destination state, for which it is assumed to349

be 0. The scan eligible list SE is initialized as a list containing the neighbors of the destination350

node. Then, the algorithm scans elements in the backward direction updating the label of every351
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node for every time interval. It computes a temporary label tempJ (Lines 7-9) and checks if it is352

less than the current expected cost Ĵ(i, t) (Line 10). Then, it possibly updates the expected cost353

of the state. After scanning all the states and computing their optimal expected cost, it evaluates354

the optimal policy for a given destination d (Line 12). Finally, the algorithm returns the optimal355

expected costs J∗ and optimal policy µ∗.356

4.3. Assignment of passengers357

The computation of optimal policy and expected costs are performed for individual destinations.358

After this, for every group of passengers, we still need to figure out the optimal departure time359

from their origin. We assume that passengers are rational and select the departure time, which360

provides them the least expected cost to their destination. We present two different approaches to361

finding the optimal departure time:362

1. If early and late arrival penalties are included : In this case, penalties are used to avoid363

arriving outside the desired travel time window. For example, commuters want to arrive at364

their destination within a certain time frame. We consider two different types of penalties,365

i.e., early (η1 / time units) and late (η2 / time units) arrival time penalties. Based on these366

penalties, the optimal departure t∗g for group g ∈ G is given as:367

t∗g ∈ argmin
tED
g ≤t≤tED

g +δ3

{Ĵ∗(og, t)+η1∗max(0, tEA
g −(t+ Ĵ∗(og, t)))+η2max(0, (t+ Ĵ∗(og, t))−tLAg )}

(6)

In equation (6), t∗g is searched within the time interval
[
tED
g , tED

g + δ3
]
for the least expected368

cost with associated penalties. The passenger assignment, in this case, can performed using369

Algorithm 2.370

2. If early and late arrival penalties are not included : In this case, optimal departure t∗g for371

group g ∈ G is given as:372

t∗g ∈ argmin
tED
g ≤t≤tED

g +δ3

{Ĵ∗(og, t)} (7)

In equation (7), t∗g is searched within the time interval
[
tED
g , tED

g + δ3
]
for the least expected373

cost, where δ3 is the maximum acceptable wait time. This case is applicable for trips such as374

shopping when passengers want to get to their destination in the least amount of time. The375

passenger assignment, in this case, can be performed using Algorithm 2 or the linear program376

(8).377

If we do not include penalties for passenger arrival outside the desired window, then we can378

derive a linear program for the assignment of passengers on optimal policies. To do so, let us379

denote vd(i, t, θ, j) be the number of passengers arriving at state (i, t, θ) ∈ S and choosing control380

j ∈ u(i, t, θ). Furthermore, let V d
gt be the number of passengers from group g, departing at time381
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t ∈
[
tED
g , tED

g + δ3
]
from their origin og to destination d ∈ D. Then, we have the following382

assignment LP:383

min
V,v

∑
d∈D

∑
(i,t,θ)∈S

∑
j∈u(i,t,θ)

vd(i, t, θ, j)cθij (8a)

s.t.
∑

j∈u(i,t,θ)

vd(i, t, θ, j)− pθ
∑

(k,t
′
,θ

′
)∈S\{d}:i∈u(k,t′ ,θ′ )

& t=t
′
+cθ

′

ki

vd(k, t
′
, θ

′
, i) = 0, ∀θ ∈ Θi(t), ∀t ∈ t̃k(i)(i),∀i ∈ N, ∀d ∈ D

(8b)∑
j∈u(o,t,θ)

vd(o, t, θ, j)− pθ
∑

g∈G:og=o &

t∈[tED
g ,tED

g +δ3]

V d
gt = 0,∀θ ∈ Θo(t),∀t ∈ T, ∀o ∈ O,∀d ∈ D (8c)

∑
t∈[tED

g ,tED
g +δ3]

V d
gt = d

ogd
g , ∀g ∈ G : dg = d,∀d ∈ D (8d)

∑
(k,t′ ,θ′ )∈S\{d}:d∈u(k,t′ ,θ′ )

vd(k, t
′
, θ

′
, d) =

∑
g∈G:dg=d

dogd, ∀d ∈ D (8e)

vd(i, t, θ, j) ≥ 0, ∀j ∈ u(i, t, θ), ∀(i, t, θ) ∈ S, ∀d ∈ D (8f)

V d
gt ≥ 0,∀t ∈

[
tED
g , tED

g + δ3
]
, ∀g ∈ G, ∀d ∈ D (8g)

In the above optimization program (8), we minimize the total expected travel time given by384

(8a). Constraints (8b)-(8e) describe the conservation of flow for every destination. For any state,385

(8b) shows that the sum of passenger flow going out of state (i, t, θ) is equal to the portion of the386

sum of flow coming into it from other states at the time t and observing θ. (8c) describes the387

conservation constraint for states associated with origin nodes, i.e., the sum of passenger flow going388

out of origin state (o, t, θ) is equal to the sum of passenger flow from different groups that have389

the same origin o departing at time t and experiencing the real-time information θ. Equation (8d)390

describes that the total sum of flow from a group at different departure times to their destination d391

should be equal to the demand associated with that group. Then, for every destination d ∈ D, the392

total flow coming into the destination state should be equal to the total demand of groups going393

to d. Finally, (8f)-(8g) represent the non-negativity constraints for the flow variables.394

Lemma 1. The optimal solution of (8) assigns passenger flow to the optimal policy corresponding395

to each destination.396

Proof. See Appendix B397

The dual variables Jd(i, t, θ) of (8b)-(8c) represent the optimal cost to go from state (i, t, θ)398

to d. Similarly, the dual variables Jd(g) of (8d) represent the optimal cost incurred by group g399

to go from its origin to destination. In fact, the dual program of (8) is the linear programming400

formulation for solving the Bellman equations (2) and (7). One of the advantages of assignment LP401

14



(8) is that it is decomposable for every destination d ∈ D and side constraints related to the flow402

of passengers can be used in this formulation. However, the number of variables can still be large403

due to the cardinality of state space. Therefore, it is much easier to use Algorithm 2 presented in404

the next paragraph for sole assignment purposes.405

406

Algorithm 2 starts with the initialization of the transitioning flows vd(i, t, θ, j) as 0. Then, for407

every destination d ∈ D, it computes the optimal cost functions Ĵd∗ and optimal policy µd∗ using408

Algorithm 1. After that, for every group, we find the optimal departure time(s) from their origin409

using (6) or (7). Then, for every possible real-time information vector a group g could receive for a410

given optimal departure time t ∈ t∗g, we assign a portion of the group demand to the transitioning411

flow variable vd(og, t, θ, j). We repeat this for every group. After this, the total demand has412

originated in the transition graph corresponding to µd∗. Using the topological order of nodes and413

processing the times in chronological order, we assign the transitioning flow using Line 18. Note414

that after assignment, we can calculate the average flow on a link (i, j) ∈ A as below:415

vij =
∑
d∈D

∑
t∈t̃k(i)(i)

∑
θ∈Θi(t)

vd(i, t, θ, j),∀(i, j) ∈ A (9)
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Algorithm 2 Uncapacitated transit assignment

1: (Initialization) vd(i, t, θ, j)← 0, ∀j ∈ u(i, t, θ), ∀(i, t, θ) ∈ S, ∀d ∈ D

2: for every d ∈ D do

3: Ĵd∗, µd∗ ← ULC(d) ▷ Computing optimal expected costs and policy for destination d

4: if arrival penalties are included then

5: t∗g = argmin
tED
g ≤t≤tED

g +δ3

{Ĵ∗(og, t)+η1 ∗max(0, tEA
g − (t+ Ĵ∗(og, t)))+η2 max(0, (t+ Ĵ∗(og, t))− tLA

g )}

6: else

7: t∗g = argmin
tED
g ≤t≤tED

g +δ3

{Ĵ∗(og, t)}

8: for every g ∈ G : dg = d do

9: for t ∈ t∗g do ▷ Optimal departure times

10: for θ ∈ Θog(t) do ▷ Possible wait time information

11: j ← µd∗(og, t, θ)

12: vd(og, t, θ, j) += pθ ∗ dogdg ∗ 1
|t∗g |

▷ Passengers observing state (og, t, θ) and taking action j

13: Find the topological order of nodes

14: for i ∈ topological order do:

15: for t ∈ t̃k(i)(i) in chronological order do

16: for θ ∈ Θi(t) do

17: j ← µd∗(i, t, θ) ▷ Optimal action at state (i, t, θ) for destination d

18: vd(i, t, θ, j) += pθ


∑

(k,t
′
,θ

′
)∈S\{d}:µd∗(k,t

′
,θ

′
)=i

& t=t
′
+cθ

′

ki

vd(k, t
′
, θ

′
, i)



An example problem for the uncapacitated assignment is solved in Appendix C.416

5. Capacitated Assignment417

The uncapacitated assignment model may produce unrealistic passenger flows on various transit418

routes. This is because of the limited capacity of vehicles, due to which some arcs may become419

saturated and cannot be accessed by some passengers depending on how other passengers make420

their route choice. If we assume that passengers mingle at nodes and have an equal probability421

to access outgoing links, then one can include the following capacity constraint in the assignment422

program (8) to produce capacity-feasible flows:423 ∑
d∈D

∑
t∈t̃k(i)(i)

∑
θ∈Θi(t)

vd(i, t, θ, j) ≤ ua, ∀(i, j) ∈ Av (10)
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where, ua is the capacity associated with transit vehicle used to serve link a ∈ Av. However, doing424

so would just limit the number of passengers on each arc without explaining the strategic behavior425

induced by failure-to-board a congested route. Moreover, passengers on-board have continuance426

priority over other passengers. The above constraint would not be able to capture such behavior. To427

model such behavior, previous studies have proposed to use failure-to-board probabilities or access428

probabilities. They evaluate the probability with which a passenger waiting at a bus stop can429

access an outgoing link. Such access probabilities result in multiple paths that a traveler can take430

with positive probability. The collection of such paths is known as ”hyperpath.” In the capacitated431

assignment, the hyperpaths/strategies are induced by both risks of denied boarding due to limited432

capacity and missing transfers due to unreliable service. A strategy helps passengers minimize433

their expected costs under various types of uncertainties. When passengers employ strategies to434

move between various origin-destination pairs and compete for the limited capacity, the strategic435

equilibrium occurs when no passenger can improve her expected cost by unilaterally switching to436

a different strategy.437

5.1. Hyperpaths438

To incorporate the access/availability probabilities and find a strategy that minimizes the ex-439

pected cost of travel in a capacitated network, we require augmenting the state space. For that440

purpose, let us define Xθ
i (t) as the random variable supported on {0, 1}|u(i,t,θ)| indicating the avail-441

ability of arcs in FS(i), when arriving at node i ∈ N\{d} at time t ∈ T , and receiving information442

θ. To be more precise, the component j of vector x ∈ Xθ
i (t) will indicate whether link (i, j) ∈ A is443

available to board or not. Let πx be the probability of observing the availability vector x ∈ Xθ
i (t)444

and X = ∪(i,t,θ)∈SXθ
i (t) be the collection of such availability vectors. The use of πx is akin to445

”access” probabilities in the previous literature, as the former describes the node-based availability446

of outgoing links and the later describes the availability of individual links. It is assumed that pas-447

sengers do not know about the availability vector x and information vector θ in advance and realize448

them when reaching a particular node at a particular time. To find an optimal strategy/policy449

in this case, we need to solve the corresponding stochastic shortest path problem. These various450

components characterizing the SSP for a specific destination d ∈ D in case of the capacitated451

assignment are described below:452

1. State space: The state space SC ⊆ N × T × Θ × X describes the possible positions of a453

passenger in space and time, information about bus arrival, and availability of links. Each454

state s ∈ SC is characterized by a tuple s = (i, t, θ, x), where i ∈ N represents the node in455

the network, t represents the possible arrival time at node i, θ ∈ Θi(t) represents the online456

information about the cost of links in FS(i), and x ∈ Xθ
i (t) represents the availability of457

outgoing links. Similar to the uncapacitated case, destination d ∈ D is considered as an458

absorbing state.459

2. Action space: When the passenger arrives at a node, they consider the current travel cost and460

future information about the cost and the availability of downstream links to decide which461
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arc to take next. For example, at every transfer node, the passenger receives information462

about the wait time of transferring nodes and whether a link is available or not. A link may463

be unavailable due to missed transfer or the vehicle associated with it being full. Then, she464

has to decide which available action to take next. Therefore, the set of actions for each state465

(i, t, θ, x) are given by uC(i, t, θ, x) = {j ∈ u(i, t, θ) : x[j] ̸= 0}. Note that due to Assumption466

12 and the presence of walking links from transfer nodes, there is no state s = (i, t, θ, x) such467

that uC(i, t, θ, x) = ϕ.468

3. Policy : A policy/strategy specifies the subset of actions that can be taken at a state. To be469

precise, µC : SC 7→ 2
|
∑

s∈SC
uC(s)|

maps every state to a subset of controls that provide equal470

expected cost to destination.471

4. Transition Functions: The transition function Pµ : SC × SC 7→ R corresponding policy472

µ is defined as Pµ[(i, t, θ, x), (µ(i, t, θ, x), t + cθiµ(i,t,θ,x), θ
′
, x

′
)] = pθ

′
πx

′
. The probability of473

transitioning from d to itself, by taking any action j ∈ uC(d) is 1. The value of π
x depends on474

the route choice of other passengers, and it is obtained from the network loading procedure.475

Using the components defined above, we can formulate the Bellman equation for finding the476

optimal strategy as below:477

J∗
C(i, t, θ, x) = min

j∈uC(i,t,θ,x)

cθij +
∑

θ′∈Θj(t+cθij)

∑
x′∈Xθ

j (t+cθij)

pθ
′
πx

′
J∗
C(j, t+ cθij , θ

′
, x

′
)

 ,∀(i, t, θ, x) ∈ SC

(11)

where, J∗
C(i, t, θ, x) denotes the optimal cost-to-go from state (i, t, θ, x) to the destination in case478

of capacitated assignment. Similar to uncapacitated assignment, one can reduce the state space479

and define the Bellman equation only on controllable components by averaging the uncontrollable480

components.481

Ĵ∗
C(i, t) =

∑
θ′∈Θj(t+cθij)

∑
x′∈Xθ

j (t+cθij)

pθπx min
j∈uC(i,t,θ,x)

{
cθij + Ĵ∗

C(j, t+ cθij)
}
,∀(i, t) ∈ Ŝ (12)

The above Bellman equation can also be solved using a label correcting algorithm, the steps482

which are summarized in Algorithm 3 from Line 1-12. The worst-case complexity remains the483

same as O(|SC ||A|). The algorithm starts by initializing the expected cost of various states as ∞,484

except the destination state, for which it is assumed as 0. The scan eligible list SE is initialized485

as a list containing the neighbors of the destination node. Then, the algorithm scans elements486

in the backward direction updating the label of every node for every time interval. It computes a487

temporary label tempJ (Lines 7-10) using both the online information probability pθ and availability488

probability πx and checks if it is less than the current expected cost Ĵ(i, t) (Line 10). Then, it489

possibly updates the expected cost of the state. After scanning all the nodes and finalizing their490
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expected costs, it evaluates the optimal policy µ∗
C for a given destination d (Line 13). Further, the491

optimal cost of taking a certain action at any state Q∗
C is evaluated in line 14.492

Algorithm 3 Label correcting algorithm for capacitated assignment

1: procedure CLC(d) ▷ Input: destination d

2: (Initialize) ĴC(i, t)←∞,∀(i, t) ∈ Ŝ\{d} and Ĵ(d)← 0

3: SE ← BS(d)

4: while SE ̸= ϕ do ▷ Input: Scan Eligible List

5: Remove an element i from SE

6: for t ∈ t̃k(i)(i) do

7: tempJ ← 0

8: for θ ∈ Θi(t) do ▷ Information vector

9: for x ∈ Xθ
i (t) do ▷ Availability vector

10: tempJ += pθπxminj∈uC(i,t,θ,x)

{
cθij + ĴC(j, t+ cθij)

}
11: if tempJ < ĴC(i, t) then

12: ĴC(i, t)← tempJ ; SE ← SE ∪BS(i)

13: µ∗
C(i, t, θ, x)← argmin

j∈uC(i,t,θ,x)
{cθij + Ĵ∗

C(j, t+ cθij)},∀(i, t, θ, x) ∈ SC\{d} ▷ Computing optimal policy

14: Q∗
C(s, j)← cθij + Ĵ∗

C(j, t+ cθij), ∀j ∈ uC(s),∀s = (i, t, θ, x) ∈ SC ▷ Cost of taking action j at state s

15: Ps,j ← 1.0/|µ∗
Cs(s)|,∀j ∈ µ∗(s),∀s = (i, t, θ, x) ∈ SC ▷ Probability of taking action j at state s

16: for every g ∈ G : dg = d do

17: if arrival penalties are included then

18: t∗g ← argmin
tED
g ≤t≤tED

g +δ3

{Ĵ∗(og, t)+η1∗max(0, tEA
g −(t+Ĵ∗(og, t)))+η2 max(0, (t+Ĵ∗(og, t))−tLA

g )}

19: else

20: t∗g ← argmin
tED
g ≤t≤tED

g +δ3

{Ĵ∗(og, t)}

21: Rg,t ← 1.0/|t∗g|,∀t ∈ t∗g ▷ Departure time choice probability

22: return Ĵ∗
C , Q

∗
C , µ

∗, P,R

The route choice of passengers is characterized by the probability of taking an action at a493

particular state. Therefore, we introduce P = {P d
s,a} as the probability of taking an action a ∈494

uC(s), ∀s ∈ S, when going to destination d ∈ D and R = {Rg,t} as the probability of group g ∈ G495

departing at time t ∈
[
tED
g , tED

g + δ3
]
. These route choice probabilities are calculated in Algorithm496

3 from lines 15-21. We can observe that when there are multiple actions j ∈ µ∗(i, t, θ, x) at state497

(i, t, θ, x) that achieve optimal expected cost, we assign equal probability to each optimal action.498

Similarly, if multiple departure times provide the same optimal expected cost for group g ∈ G,499

we assign equal probabilities to these departure times. However, if there is only one action that500

achieves minimum, then we assign the probability 1.0 to that action. The use of route choice501

probabilities allows us to use a flexible choice of selecting actions at various states. For example,502
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one can use the logit-based route choice probabilities.503

5.2. Network loading504

The computation of optimal policy/strategy for individual destinations reveals the number of505

passengers using a specific strategy (since we know the number of passengers in a group, their506

departure time probabilities, and their route choice probabilities). In this section, we describe a507

NetworkLoading procedure that converts these strategic flows into link flows. The loading of508

passengers follows some behavioral rules that are described below:509

1. At a transfer node, if a passenger according to her strategy decides to continue on the same510

route r rather than taking a transfer or ending her trip, then that passenger should get the511

priority over other passengers who either want to transfer to r or begin their journey with r.512

Such priority is known as continuance priority (Hamdouch and Lawphongpanich 2008). At513

any node, the passengers with continuance priority are loaded first onto the outgoing links.514

2. We assume that passengers without continuance priority have equal access to the outgoing515

links, and they are processed in random and a uniformly distributed single queue. Such516

loading of passengers is also known as random loading. One could try other loading approaches517

such as First-Come-First-Serve, Regret, etc. Binder et al. 2017 discusses such exogenous518

priority rules for transit assignment, which we leave for future research to explore.519

The NetworkLoading procedure is summarized in Algorithm 4. It takes passenger route520

choice probabilities for various destinations {P̂ d}d∈D and departure time probabilities for indi-521

vidual groups {R̂g}g∈G as inputs and outputs link flows v and availability probabilities π. The522

procedure starts by initializing the state-action passenger flows vd for various destinations, node-523

time priority passenger flows Vp and non-priority passenger flows Vn. After this, we originate524

the group flows at various departure times according to the departure time choice probabilities R̂525

(Lines 4-6). Then, we process various nodes in topological order to load the passenger demand on526

outgoing links. For each node i ∈ N\{d}, we assume an availability vector, where all the outgoing527

links u(i, t, θ) are available, i.e., we assign πx = 1,∀x = (i, t, θ, {1}|u(i,t,θ)|) ∈ SC , 0, otherwise.528

Then, we perform the loading of the demand that reached node i onto outgoing links, which is529

divided into two phases. In the first phase, we assign the priority flows (Lines 11-23). Depending530

on the strategy at various states (i, t, θ, x) for destination d, a fraction of flow tempF low is assigned531

to outgoing link (i, j) : j ∈ uC(i, t, θ, x) according to route choice probabilities P̂ d
(i,t,θ),j . Then, a532

fraction of tempF low is further assigned to node j and transitioning time t
′
either as priority or533

non-priority flow depending on the strategy and route choice probabilities. Of course, for the origin534

nodes, there will be no priority flow to be assigned. The second phase of the loading procedure at535

node i is the loading of non-priority flows. This loading is performed using a single-queue processing536

procedure described by Marcotte et al. 2004 and Zimmermann et al. 2021 for static auto networks.537

We first calculate the residual capacity ũ of outgoing links after the loading of priority flows. Then,538

based on the route choice probabilities, we evaluate ṽ, which describes the number of passengers539
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trying to access outgoing links. The flow trying to access a particular link ṽij may exceed the540

residual capacity ũij . Assuming that all the non-priority passengers waiting at that node have an541

equal probability of accessing an outgoing link, we evaluate the access probability (
ũij

ṽij
) of that542

link. Then, a minimum access probability β of any outgoing link is calculated using the expression543

given in Line 34. β describes the proportion of passengers that can be loaded before one or more544

outgoing links get saturated. If the accessing flow of any outgoing link does not exceed its residual545

capacity, then β = 1, which means all the waiting passengers can access their optimal choice. For546

assigning the appropriate number of passengers onto outgoing links, we repeat a similar procedure547

as priority flows, where some of the passengers reach the outgoing node as a priority and some as548

non-priority flow. We update the residual capacity and the number of passengers to be loaded at549

various times U(i, t). If β < 1, we evaluate the saturated outgoing links, prepare the availability550

vector, and update its probability πx using β. The availability probabilities are updated based on551

the principle that only the β proportion of passengers will observe the current state, and the rest552

of the passengers (1− β) will observe a different state. We continue updating the state availability553

probabilities in this manner until all the accessing flow is assigned. Note that due to Assumption554

12 and the presence of walking links from transfer nodes, we will never observe the availability555

vector, where all the outgoing links get saturated and are not available. This procedure will evalu-556

ate π’s, which will be further used in the label correcting algorithm for updating the strategies in557

the assignment algorithm. An example problem showing the execution of the NetworkLoading558

algorithm is provided in Appendix C.559

560

Algorithm 4 Network loading561

1: procedure NetworkLoading(P̂, R̂)562

2: vd(s, j)← 0,∀j ∈ uC(s), ∀s = (i, t, θ, x) ∈ SC ,∀d ∈ D563

3: Vp(i, t)← 0, Vn(i, t)← 0,∀t ∈ t̃k(i)(i), ∀i ∈ N564

4: for g ∈ G do565

5: for t ∈
[
tED
g , tED

g + δ3
]
do566

6: V d
n (og, t) += R̂g,t ∗ d

ogd
g567

568569

7: Find the topological order of nodes in N570

8: for i ∈ topological order do571

9: stop← FALSE; Un(i, t)← Vn(i, t);∀t ∈ t̃k(i)(i)572

10: x(i,t,θ) ← {1}|u(i,t,θ)|, πx ← 1, if x = x(i,t,θ), 0, otherwise, ∀(i, t, θ, x) ∈ SC573

11: for d ∈ D do574

12: for t ∈ t̃k(i)(i) do575

13: for θ ∈ Θi(t) do576

14: for j ∈ uC(i, t, θ, x(i,t,θ)) : k(i) == k(j) do577

15: tempF low ← pθ ∗ πx(i,t,θ) ∗ P̂ d
(i,t,θ,x(i,t,θ)),j

∗ V d
p (i, t); t

′
= t+ cθij578

16: vd(i, t, θ, x(i,t,θ), j) += tempF low579

17: for θ
′ ∈ Θj(t

′
) do580
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18: x(j,t′ ,θ′ ) ← {1}
|u(j,t′ ,θ′ )|

581

19: for l ∈ uC(j, t
′
, θ

′
, x(j,t′ ,θ′ )) do582

20: if k(j) == k(l) then583

21: V d
p (j, t

′
) += pθ

′
∗ πx

(j,t
′
,θ

′
) ∗ P̂ d

(j,t′ ,θ′ ,x
(j,t

′
,θ

′
)
),l
∗ tempF low584

22: else585

23: V d
n (j, t

′
) += pθ

′
∗ πx

(j,t
′
,θ

′
) ∗ P̂ d

(j,t′ ,θ′ ,x
(j,t

′
,θ

′
)
),l
∗ tempF low586

587588589590591592593

24: for j ∈ FS(i) do594

25: ũij ← C(k(j))−
∑

d∈D
∑

t∈t̃k(i)(i)
∑

x∈Xθ
i (t)

∑
θ∈Θi(t)

vd(i, t, θ, x, j)595
596

26: while not stop do597

27: for d ∈ D do598

28: ṽdij ← 0, ∀j ∈ FS(i), ∀d ∈ D599

29: for t ∈ t̃k(i)(i) do600

30: for θ ∈ Θi(t) do601

31: for j ∈ uC(i, t, θ, x(i,t,θ)) do602

32: ṽdij += pθ ∗ πx(i,t,θ) ∗ P̂ d
(i,t,θ,x(i,t,θ)),j

∗ Un(i, t)603
604605606607

33: ṽij =
∑

d∈D ṽdij ▷ Flow that’ll be competing to access (i, j)608

34: β ← min
{
1,minj∈FS(i)

(
ũij

ṽij

)}
609

35: for j ∈ FS(i) do610

36: ũij = ũij − βṽij611
612

37: for d ∈ D do613

38: for t ∈ t̃k(i)(i) do614

39: for θ ∈ Θi(t) do615

40: for j ∈ uC(i, t, θ, xi,t,θ) do616

41: tempF low ← β ∗ pθ ∗ πx(i,t,θ) ∗ P̂ d
(i,t,θ,x(i,t,θ)),j

∗ Ud
n(i, t); t

′
= t+ cθij617

42: vd(i, t, θ, x(i,t,θ), j) += tempF low618

43: for θ
′ ∈ Θj(t

′
) do619

44: for l ∈ uC(j, t
′
, θ

′
, x(j,t′ ,θ′ )) do620

45: if k(j) == k(l) then621

46: V d
p (j, t

′
) += pθ

′
∗ πx

(j,t
′
,θ

′
) ∗ P̂(j,t′ ,θ′ ,x

(j,t
′
,θ

′
)
),l ∗ tempF low622

47: else623

48: V d
n (j, t

′
) += pθ

′
∗ πx

(j,t
′
,θ

′
) ∗ P̂(j,t′ ,θ′ ,x

(j,t
′
,θ

′
)
),l ∗ tempF low624

625626627628629

49: Ud
n(i, t)← (1− β)V d

n (i, t)630631632

50: if β < 1 then633

51: for j
′ ∈ argminj∈FS(i)

(
ũij

ṽij

)
do634

52: for t ∈ t̃k(i)(i) do635

53: for θ ∈ Θi(t) do636
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54: p← πx(i,t,θ)637

55: πx(i,t,θ) ← βp638

56: x(i,t,θ)[j
′
]← 0639

57: πx(i,t,θ) ← (1− β)p640641642643

58: else644

59: stop ← TRUE645646647
return π,v648649

5.3. Assignment of passengers650

The optimal strategy computed using Algorithm 3 helps evaluate the route choice P and de-651

parture time choice probabilities R using the probability of availability vectors π. Then, the Net-652

workLoading procedure in Algorithm 4 will update the values of π based on P and R. When no653

passenger can improve their expected cost of travel by altering the probability of taking any action,654

then the equilibrium is achieved. This means that, in equilibrium, all non-null choice probabilities655

P d
s,a and Rd

g,t associated to a state and group resp. will have the same expected costs Qd
s,a and Ĵd

og ,t.656

To characterize equilibrium, let us define the feasible set of route choice and departure time choice657

probabilities P as below:658

P =

P×R ∈ R|D|×
∑

s∈SC
|uC(s)| × R|G|×|T | :

∑
j∈uC(s)

P d
s,j = 1, ∀s ∈ SC , ∀d ∈ D, and

∑
t∈[tED

g ,tED
g +δ3]

Rg,t = 1, ∀g ∈ G


(13)

Further, the expected cost of choice probability vector (P,R) denoted by C(P,R) can be evaluated659

using the following equation:660

C(P,R) =
∑
d∈D

∑
s∈SC

∑
j∈uC(s)

Qd(s, j)× P d
s,j +

∑
g∈G

∑
t∈[tED

g ,tED
g +δ3]

Ĵd(og, t)× Pg,t (14)

where, Qd(s, j) is the cost of taking action j in state s when going to destination d. We call (P∗,R∗)661

as the equilibrium probabilities if they satisfy the variational inequality given as:662

〈
C(P∗,R∗),

{
P∗ −P

R∗ −R

}〉
≤ 0,∀(P,R) ∈ P (15)

Since the expected cost of mapping C(P,R) cannot be evaluated in closed form as it depends663

on the availability probabilities π through the loading procedure, we cannot formulate the above664

VI problem into an equivalent optimization problem. However, there exists at least one solution665

to this VI problem because the set P is compact, and mapping C(P,R) is continuous since it666

depends on the availability probabilities π, which is a function of continuous (P,R) (Zimmermann667

et al. 2021). Moreover, we cannot show that there exists a unique solution to the given variational668

inequality. To solve the assignment problem, we use an MSA-based heuristic approach. We start by669

initializing the entries of the initial (P̂, R̂) as zero. Before running the Algorithm 3, we assume that670
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π(i,t,θ,x) = 1, if x = {1}|u(i,t,θ)|, 0 otherwise ,∀x ∈ Xθ
i (t),∀(i, t, θ) ∈ S. Then, we evaluate the best671

response choice probabilities (P,R) using Algorithm 3, which are used for updating the current672

(P̂, R̂) based on the values of (P̂, R̂) and (P,R) using α = 1
k+1 , where k is the iteration number.673

Then, the updated (P̂, R̂) is used for the NetworkLoading procedure that further updates the674

availability probabilities π. We continue this procedure until the gap(P̂, R̂,P,R) calculated using675

(16) reaches below the tolerance level ϵ. The gap function is similar to the one used in the traffic676

assignment studies based on the user equilibrium principle. However, they use link flow vectors but677

the current study uses the link choice probabilities. The overall MSA algorithm is summarized in678

Algorithm 5. The converged average link flow values can be calculated using (17).679

gap(P̂, R̂,P,R) =

∑
d∈D

∑
s∈SC

∑
j∈uC(s)

Qd(s, j)× (P̂ d
s,j − P d

s,j) +
∑
g∈G

∑
t∈[tED

g ,tED
g +δ3]

Ĵd(og, t)× (R̂g,t −Rg,t)

∑
d∈D

∑
s∈SC

∑
j∈uC(s)

Qd(s, j)× P d
s,j +

∑
g∈G

∑
t∈[tED

g ,tED
g +δ3]

Jd(og, t)×Rg,t

(16)

680

vij =
∑
d∈D

∑
t∈t̃k(i)(i)

∑
θ∈Θi(t)

∑
x∈Xθ

i (t)

vd(i, t, θ, x, j),∀(i, j) ∈ A (17)

Algorithm 5 Method of successive averages for capacitated assignment

1: procedure MSA(ϵ)
2: (Initialization) P̂ d

s,j ← 0, ∀j ∈ uC(s),∀s ∈ SC ,∀d ∈ D

3: R̂g,t ← 0,∀t ∈
[
tED, tED + δ3

]
, ∀g ∈ G

4: k ← 0; gap←∞
5: while gap > ϵ do
6: α = 1

k+1

7: Ĵd, Qd, µd, P d, Rd ← CLC(d), ∀d ∈ D
8: P̂← αP̂+ (1− α)P̂; R̂← αR̂+ (1− α)R̂
9: π,v←NetworkLoading(P̂, R̂)

10: Calculate gap using the equation (16)
11: k ← k + 1
12:
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6. Numerical experiments681

In this section, we show the application of the proposed schedule-based assignment models. For682

the first experiment, the network, schedule, and demand table are given in Figure 2. There are683

fifteen stops and five color-coded transit routes in the network. The original network has only three684

walking transfer links, namely, 3-4, 3-12, and 12-4. To better understand transfer behavior in the685

presence of online information, we created more walking transfer links in the network. They are686

given as 2-8, 9-4, and 13-5. Stop 14 is the only stop that provides a waiting transfer from one route687

to another in the network. There are four trips of each route whose complete schedule is shown688

in Figure 2(b). There are six origin-destination pairs in the network. A synthetic demand table is689

created for the assignment, which is shown in Figure 2(c). It has 24 groups with different origins,690

destinations, earliest departure, and earliest and latest arrival times, with a total demand of 128691

passengers. The network has multiple routes, trips, transfers, O-D pairs, and passenger groups,692

which makes it a suitable candidate for testing our transit assignment models.693

694

The support of random travel times of in-vehicle links is given as {0.9c̄ij , c̄ij , 1.2c̄ij , 1.5c̄ij},695

where c̄ij is the scheduled travel time of link (i, j) ∈ Av. All trips are assumed to have a capacity696

of 20 passengers. The early and late arrival penalties are assumed to be η1 = η2 = 0.5. The697

acceptable waiting and walking times are assumed as δ0 = δ1 = δ2 = δ3 = 15 minutes. Overall,698

there are 89 nodes and 173 links in the schedule-based transit network. It has 24 access, 20 egress,699

and 64 in-vehicle links. In what follows, we present the assignment results for the uncapacitated700

and capacitated transit assignment in separate subsections.701

6.1. Uncapacitated assignment702

We start by creating the transfer links using Algorithm 6. For the uncapacitated assignment,703

it creates only four waiting transfer links and twenty five walking transfer links in the current704

schedule-based network. The number of generated states is 4,720. After this, we solve the Bellman705

equation (2) for individual destinations. It took a fraction of a second to solve the current problem706

using both value iteration and label correcting algorithms. Figure 3 shows the expected cost of707

travel between various origin-destination pairs for varying departure times. We can observe that708

for various origins, the expected cost to the respective destination decreases with time until we709

reach the time when a bus trip departs from that origin. Then, similar behavior is observed for the710

passengers waiting for the next trip to arrive. Further, we see that the average cost to destination711

6 is lower than the average cost to destination 5. This is because destination 6 can be reached from712

various origins without transferring to a different route. On the other hand, to reach destination713

5, one must transfer to a different route, which sometimes causes longer expected cost.714

715

We employ the Monte-Carlo simulation to estimate the reliability of optimal paths in the net-716

work when the schedule is perfectly reliable. We begin by evaluating the optimal paths between717

various O-D pairs for a perfectly reliable network. Then, for every O-D pair (o, d) and departure718
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1 2 3 4 5 6

7 8 9 10 11

12 13

14 15

(a) Network

RouteID TripID Schedule

Red

1001 10:00, 10:02, 10:04
1002 10:10, 10:12, 10:14
1003 10:20, 10:22, 10:24
1004 10:30, 10:32, 10:34

Blue

2001 10:06, 10:08, 10:10
2002 10:16, 10:18, 10:20
2003 10:26, 10:28, 10:30
2004 10:36, 10:38, 10:40

Violet

3001 10:00, 10:02, 10:04, 10:06, 10:08, 10:10, 10:12
3002 10:07, 10:09, 10:11, 10:13, 10:15, 10:17, 10:19
3003 10:14, 10:16, 10:18, 10:20, 10:22, 10:24, 10:26
3004 10:21, 10:23, 10:25, 10:27, 10:29, 10:31, 10:33

Orange

4001 10:08, 10:10, 10:12, 10:14
4002 10:18, 10:20, 10:22, 10:24
4003 10:28, 10:30, 10:32, 10:34
4004 10:38, 10:40, 10:42, 10:44

Green

5001 9:55, 9:57, 10:04, 10:06
5002 10:05, 10:07, 10:14, 10:16
5003 10:15, 10:17, 10:24, 10:26
5004 10:25, 10:27, 10:34, 10:36

(b) Schedule

Group Origin Dest. tED
g tEA

g tLAg Dem.

1 1 6 09:55 10:07 10:12 5
2 1 6 09:55 10:10 10:15 6
3 1 6 09:50 10:04 10:09 4
4 1 6 10:05 10:17 10:22 8
5 1 6 10:05 10:20 10:25 2
6 1 6 10:00 10:14 10:19 2
7 1 6 09:58 10:27 10:32 8
8 1 6 10:00 10:24 10:30 9
9 1 6 10:05 10:37 10:42 11
10 1 5 09:52 10:05 10:10 1
11 1 5 10:05 10:15 10:20 5
12 1 5 09:55 10:25 10:30 4
13 1 5 09:57 10:36 10:40 5
14 7 6 09:58 10:10 10:15 7
15 7 6 10:08 10:20 10:25 2
16 7 6 10:15 10:35 10:40 4
17 7 5 10:13 10:33 10:38 4
18 7 5 10:03 10:18 10:23 7
19 14 6 10:05 10:14 10:20 9
20 14 6 10:13 10:22 10:28 5
21 14 6 10:20 10:36 10:40 8
22 14 5 10:05 10:12 10:18 4
23 14 5 10:10 10:20 10:25 2
24 14 5 10:15 10:30 10:36 6

(c) Demand table

Figure 2: Network, schedule, and demand table (Tong and Richardson 1984)

time interval, we generate 1000 random passenger journeys following policy µd∗ starting from o and719

ending at d. For any (i, t) associated to every journey, θ is drawn from the distribution {pθ}θ∈Θi(t).720

Then, we evaluate the percentage of trajectories that are same as the optimal path corresponding721

to (o, d) ∈ O×D in the perfectly reliable network to calculate the reliability of that path. Table 1722

shows the results of the reliability of paths evaluated in the perfectly reliable network. We observe723

that paths of origin-destination pairs 14-5, 14-6, and 7-6 have reliability greater than 90%. This724

could be possible because the origin-destination pairs are either directly connected or connected725
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Figure 3: Expected cost between various origin-desination pairs for varying departure times in case of uncapacitated
assignment

with a reliable transfer in the network. Further, the path corresponding to the origin-destination726

pair 7-5 shows the least reliability.727

Table 1: Reliability of optimal paths in the perfectly reliable network

Origin Destination Reliability of optimal path

1 5 0.78
7 5 0.49
14 5 1.0
1 6 0.80
7 6 0.98
14 6 0.90

Based on the above expected costs and whether or not late and early arrival penalty is being728

applied, we present the optimal departure time results for various passenger groups in Table 2.729

When the penalties are not applied, we look for a departure time that comes after the earliest730

departure time and provides the least expected cost to the respective destination. This outputs731

similar departure times for groups that have the same origin and neighboring earliest departure732

times. When the early and late arrival penalties are applied, we look for departure time that pro-733

vides the least expected cost based on (7). The penalties sometimes cause a passenger group to734

depart early or late to arrive at the destination in a given time interval.735

736

For assigning passengers we use the departure times calculated based on the penalties. The737

average passenger flow obtained after running Algorithm 2 is visualized in Figure 4. The flow of738

passengers on various links is varied according to the line width of various links in the figure. The739
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Table 2: Optimal departure time of passenger groups

Group Penalties Penalties Group Penalties Penalties
not included included not included included

1 10:05 10:05 13 10:00 10:09
2 10:05 10:05 14 10:17 10:03
3 10:05 09:55 15 10:17 10:10
4 10:05 10:05 16 10:17 10:17
5 10:05 10:05 17 10:17 10:17
6 10:05 10:05 18 10:17 10:03
7 10:05 10:09 19 10:08 10:08
8 10:05 10:09 20 10:18 10:18
9 10:05 10:09 21 10:24 10:24
10 10:00 10:00 22 10:18 10:08
11 10:09 10:09 23 10:18 10:18
12 10:00 10:09 24 10:18 10:18

transfer links are represented using dashed lines. If a link is not shown between two nodes, then740

either such link does not exist in the network, or the flow of passengers on that link is zero. We741

can observe that most passengers prefer taking the first and second trips of various routes in the742

network. This is because most passenger groups have departure times closer to the departure times743

of the first and second trips of various transit routes departing from their origins. We observe the744

highest flow on the second trip of red and blue routes. This is because together these two routes745

connect both destinations (5 and 6). The passenger groups going from origin 14 to destination746

6 prefer taking the orange route and the passenger groups going from 1 to 5 or 6 prefer taking747

the transfer 3-4. However, we observe some flow on the first trip of the green route from origin 1748

to destination 6 that takes a transfer to the orange route. The passengers going from origin 7 to749

destination 5 prefer taking the transfer 8-2 from the violet to the red route. To go to destination750

5, we observe some passengers taking transfers 12-4 and 3-4 from the second trip of the orange and751

red routes to the third trip of the blue route. We do not observe a significant flow of passengers for752

the fourth trip of various transit routes. This is because most groups do not have departure time753

window as late as compared to the departure times of fourth trips of various routes departing from754

various origins.755
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Figure 4: Passenger flow on various trips for uncapacitated transit assignment
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6.2. Capacitated assignment756

In this section, we present the results of the capacitated transit assignment. We start by757

creating the transfer links using Algorithm 6. For this case, it creates seven waiting transfer links,758

twenty four walking transfer links, and thirty four walking links for failed transfers. The number759

of generated states is 29,832, which is six times higher as compared to the uncapacitated case. We760

ran the assignment Algorithm 5 with the gap tolerance value ϵ = 0.05%. It took 140 iterations761

and 8.5 minutes to converge to the solution with required tolerance gap. We plot the convergence762

behavior of the algorithm in Figure 5, where we can observe a continuous decline in the gap value763

with every iteration. The overall convergence is achieved fairly quickly.764
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Figure 5: Converege behavior of MSA algorithm

The final values of the expected cost of travel between various origin-destination pairs are plot-765

ted in Figure 6. The average cost of travel to destination 5 from various origins is more than the766

destination 6. This is because of the presence of paths without transfer between various origins767

and destination 6. On the other hand, one has to take at least one transfer to get to destination768

5. Due to limited capacity, passengers miss transfers, which leads to higher expected travel times.769

If we compare the expected cost from various origins to destination 6 in both uncapacitated and770

capacitated cases, we find that the expected cost of traveling between 1-6 is higher in the case of771

capacitated assignment as compared to the uncapacitated assignment. This is because passengers772

who do not get the preferred option of the red route due to limited capacity would either have to773

take the violet route or the green route resulting in higher expected cost. For destination 5, the774

expected cost of travel between 7-5 in the case of capacitated assignment has risen considerably as775

compared to the uncapacitated assignment. This is because passengers who want to take transfer776

8-2 coming from 7 on the violet route do not get the priority over passengers who are continuing777

their journey on link 2-3 of the red route.778

779

The converged departure time probabilities for various groups are visualized in Figure 7. Out of780
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Figure 6: Expected cost between various origin-desination pairs for varying departure times in case of capacitated
assignment

twenty four groups, ten groups have only one departure time, i.e., the probability of departing at a781

single departure time by these groups is 1. We further observe that eleven groups have two values782

in their departure time support and three groups have three or more values in their departure time783

support.784
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The uncapacitated assignment does not give us capacity-feasible flows. This is evident from786

the flow values visualized in Figure 4, where the first trip of the orange route and the second trip787
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Figure 8: Passenger flow on various trips for capacitated transit assignment
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of red and violet routes carry more flow than their capacity (20 passengers). The capacitated788

assignment results in more realistic passenger flow on various trips and routes, which is visualized789

in Figure 8. Due to the limited capacity of transit routes, passengers have to shift from their most790

preferred choice to other choices. By looking at the figure, we can see that various segments of791

many attractive trip options are running at near or full capacity. This includes the first trip of the792

orange route, the second trip of red, green, orange, and blue routes, and the third trip of violet and793

blue routes. A significant proportion of passengers taking the first trip of the orange route in case794

of the uncapacitated assignment are distributed to the second and third trip of the same route. To795

travel between 1-6, the orange route and combination of red and blue routes are the most popular796

choices. Both choices include one transfer and provide improved expected costs as compared to797

direct routes (green and violet). To travel between 7-5, passengers prefer taking two transfers 8-2798

and 3-4 within second or second to third trips of the respective routes. Some passengers going from799

14 to 5 have to face denied boarding on the blue route due to the only option to get to destination800

5. This results in non-zero flow on transfer links 12-4 between various trips of orange and blue801

routes. Finally, we do not observe any passengers that have to walk to their destination due to802

failed transfer. This is because most passenger groups have departure times closer to the departure803

times of the first and second trips of various transit routes departing from their origins. This results804

in the availability of an alternative trip for passengers to take in case of missed transfers.805

6.3. Comparison to reliable schedule-based assignment806

We further compare the results of the capacitated schedule-based assignment computed in the807

previous section to the capacitated assignment results when buses are not delayed and follow the808

perfectly reliable schedule. For this purpose, we assume that link travel times have only one re-809

alization, i.e., scheduled travel time w.p. 1.0. We ran the assignment Algorithm 5 with the gap810

tolerance value ϵ = 0.05%. It took 92 iterations and 57 seconds to converge to the solution with811

the required tolerance gap. The expected costs to go between various origin-destination pairs for812

varying departure times are plotted in Figure 9. We compare these costs with the ones given in813

Figure 6. For destination 6, the overall pattern in the trend of values computed in both cases is814

the same. However, we observe that the perfectly reliable network provides lower expected costs815

as compared to the unreliable network. Moreover, we see that for some origins, there are more816

points in Figure 9(a). For example, one cannot depart after 10:19 in Figure 6(a) from origin 7817

and still reach destination 6, but it is possible to do so if there is a perfectly reliable network (see818

Figure 9(a)). For destination 5, the expected cost to go from various origins in unreliable network819

(Figure 6(b)) is significantly higher than the reliable network (Figure 9(b)). We see a lot more820

points in Figure 9(b) because all the transfers are available. This analysis shows that the strategies821

evaluated with reliable schedule is overly optimistic but not very realistic.822

823

We plot the final average flow values in the network after running the Algorithm 5 in Figure824

10 and compare its results with the unreliable assignment results shown in Figure 8. The main825

observation is that there is more transferring flow in the case of reliable networks. For example,826
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Ĵ
(s
ec
)

Origin
1
7
14

(b) Destination 5

Figure 9: Expected cost between various origin-desination pairs for varying departure times in case of capacitated
assignment for perfectly reliable network

there is a non-zero flow on transfer links 13-5 and 3-12 of various trips. This is because the827

schedule is perfectly reliable and passengers can make various transfers which are not possible if828

there is a delayed service. This shows that assignment results computed based on a reliable schedule829

assumption give more transferring passenger flow than should happen in practice. Previous studies830

have used penalties to avoid such a large number of transfers. However, we let the algorithm do831

the penalization systematically and realistically.832

6.4. Application to real case study833

We use the Minneapolis transit network to demonstrate the application of the presented method-834

ology on a large-scale network. To evaluate the impact of multiple transit route options, we have835

selected 13 high ridership routes, including routes 2, 3, 4, 5, 6, 11, 18, 113, 114, 115, Blue Line,836

Green Line, and the Red Line (see Figure 11). We use synthetic transit demand going to the Uni-837

versity of Minnesota campus during morning peak hours (7-9 AM) obtained from the 2010 activity-838

based travel demand model for Twin Cities, MN, developed by Metropolitan Council (Cambridge839

Systematics 2015). The data contains information about passenger trip origins, destinations, and840

preferred arrival and departure times. Since the departure and arrival times are available on a841

30-min scale, we have subtracted a uniformly distributed random time between 5 and 20 minutes842

from the departure time and added a random time between 5 and 20 minutes to the arrival time843

to obtain the earliest departure time and the latest arrival time respectively. Additionally, the844

earliest arrival time was calculated by subtracting a random time between 5 and 10 minutes from845

the latest arrival time of passengers. The schedule-based transit network was created using the846

GTFS data provided by Metro Transit, which is the primary agency in Twin Cities, MN, offering847

an integrated network of buses, light rails, and a commuter train. The travel time to traverse access848
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links or walking transfer links was calculated by dividing their Euclidean distance by the average849

walking speed (which is assumed to be 3 mi/hr). We use 0.75mi and 0.25mi as walking thresholds850

for creating access/egress and transfer links respectively.851

852

Figure 11: Minneapolis transit network (For interpretation of colors, please refer to the web version of this article)

The selected SB transit network has 510 stops, 13 routes, 101 trips, 3742 nodes, 3333 ac-853

cess/egress links, 3557 in-vehicle links, 3703 waiting/walking transfer links, 153 O-D pairs (82854

origins, 4 destinations), and 302 passenger groups. Since we could not arrange historical AVL data855

for this study, we assumed the support of random travel times (in seconds) of in-vehicle links as856

below:857

858 

c̄ij , c̄ij ≤ 120

c̄ij , 1.1c̄ij , 120 ≤ c̄ij < 240

c̄ij , 1.1c̄ij , 1.2c̄ij 240 ≤ c̄ij < 360

c̄ij , 1.2c̄ij , 1.5c̄ij c̄ij ≥ 360

where, c̄ij is the scheduled travel time (in seconds) of link (i, j).859
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860

Figure 12: Average travel time (min) from various origin zones departing at 8:00 AM aggregated over destinations
(For interpretation of colors, please refer to the web version of this article)

Other parameters are assumed as given in Section 6. The number of generated states is 4,02,451.861

We ran the Algorithm 5 with the gap tolerance value ϵ = 1%. It took 2 iterations and 8,040 seconds862

to converge to the solution with required tolerance gap. The average travel time from various origins863

departing at 8:00 A.M. aggregated over various destinations is shown in Figure 12. The area around864

the campus is accessible within average travel time of 10 minutes. The Como area and Downtown865

East are also accessible within average travel time of 20 minutes. The average travel time to the866

campus increases in Uptown area, where it can range from 50-70 minutes of travel time.867

868

The average passenger flow in the network, aggregated over various transit trips, is shown in869

Figure 13. The flow of passengers on various links is varied according to the color intensity of870

various links in the figure. In Southwest Minneapolis region, passengers prefer boarding routes 4,871

5, 11, 18, and 114. Since routes 3, 2, 6, 113, and the Green Line go to the University campus, these872

routes have the highest ridership, as shown in Figure 14. Passengers either take these routes directly873

or transfer to them to get to the campus. Figure 15 shows the aggregated number of passengers874

transferring from one route to another. Route 2 and Green Line have the highest number transfers875

to reach the University campus because of their higher frequency.876
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Figure 13: Aggregated passenger flow on Minneapolis transit network (For interpretation of colors, please refer to
the web version of this article)

7. Conclusions and directions for future research877

The current research develops a schedule-based transit assignment model that predicts pas-878

senger route choice behavior in the presence of online bus arrival information. The availability of879

online information induces an adaptive behavior, where a passenger who faces failed transfer due880

to early or late arrival of buses, can consider alternative bus routes to minimize their expected cost881

to destination. We present two transit assignment models based on whether or not the limited882

capacity of transit vehicles is considered. The uncapacitated assignment model is useful for transit883

systems with low ridership, whereas the capacitated assignment model is useful for transit systems884

with high ridership. In both cases, we propose that passengers adopt strategies to travel and use the885

stochastic shortest path as a modeling tool to characterize passenger hyperpaths. Under restrictive886

assumptions, a linear program can be solved to perform the uncapacitated assignment. On the887

other hand, the capacitated assignment is more complex than the uncapacitated assignment. This888

is because the strategic behavior of passengers is observed not only because of online information889

but also due to the limited capacity of transit vehicles. For this purpose, we formulate the capaci-890

tated assignment problem as a variational inequality problem, which is solved using an MSA-based891

heuristic algorithm. The algorithm runs the shortest path as well as a loading procedure to incor-892

porate realistic passenger behavior. The MSA algorithm shows good convergence performance on893

the conducted experiments. We present case studies based on the Tong and Richardson 1984 and894

Twin Cities schedule-based transit networks. The results evaluated the departure times of various895
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groups and passenger flows on various trips of transit routes. The computational time required896

to perform both uncapacitated and capacitated assignments was within 10 minutes for Tong and897

Richardson 1984 network. The analysis shows that the strategies evaluated with reliable schedule898

assumption is overly optimistic but not very realistic. We observed that such assumption leads899

to unreliable paths in the network and produces more transferring flow than the proposed model.900

The limited capacity results in high-dimensional strategies and more complex behavior. The de-901

nied boarding leads to higher expected costs to passengers. In the case study on the subnetwork902

of the Twin Cities transit network with artificial demand, we found that University of Minnesota903

students traveling from residential areas to campus may choose transfer paths in the event of highly904

unreliable service on direct transit routes. Route 2 and the Green Line were found to carry the905

highest number of transferring passengers.906

907

One of the disadvantages of the capacitated assignment model is the explosion of state space908

due to incorporation of availability vector in the state space. This results in the high computa-909

tional time required to solve the corresponding SSP. For the assignment, one needs to solve the SSP910

several times, which could make it difficult to produce assignment results. Future research should911

focus on proposing techniques to solve this problem faster. This could be achieved using approxi-912

mate dynamic programming algorithms. Nevertheless, the exact methods developed in this study913

will help in evaluating the accuracy of the approximation algorithms. Furthermore, a model-free914

reinforcement learning approach can also be used to predict passenger behavior in the presence of915

online information. The calibration of such a model using travel behavior data (e.g., Automatic916

Fare Collection data) will require a significant effort. Finally, the current model provides a flexible917

framework to incorporate various choice probabilities. For example, one can use logit-based route918

choice probabilities to achieve a stochastic user equilibrium.919
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Appendix A Creation of transfer links1081

In this study, we propose two types of assignment models, namely, uncapacitated and capaci-1082

tated assignments. In both assignment models, we reduce the transfer links based on an acceptable1083

waiting time limit. Moreover, in the uncapacitated assignment, the transfers can be further reduced1084

based on the probability of making a transfer. For example, if there are multiple transfer trips of1085

the same transit route available and all of them provide transfer w.p. 1, then we should only keep1086

the trip that provides the least waiting time. This is because a passenger would not likely wait for1087

a different trip of the same transit route. However, in the case of capacitated assignment, for a1088

passenger, we cannot evaluate the probability of making a transfer as it depends on the availability1089

of space which further depends on the strategies of other passengers.1090

1091

The steps for creating transfer links are summarized in Algorithm 6. It takes transfer links A
′
t1092

created using the criteria described in Section 3 and the type of assignment as inputs and produces1093

the final transfer links as output. The algorithm starts by initializing the final set of transfer links1094

At as an empty set and collecting all the transfer nodes in the network. Then, for each transfer1095

node i, we find all the transit routes that can be transferred from it. For each transferring route, we1096

find the set of nodes associated with it (connecting nodes) and sort them in the increasing order of1097

their scheduled departure time. After that, for uncapacitated assignment, we create transfer links1098

from node i to other nodes in connecting nodes starting from the one for which there exists at1099

least one arrival time instance so that the transfer can be made successfully (i.e., with a positive1100

probability) to the one for which all its arrival time instances can be successfully transferred from1101

any arrival time instance of node i (i.e., the transfer is made w.p. 1). If we cannot find a node1102

that can be transferred w.p. 1, then, we create a walking link from i to all destinations. This is1103

done to finish the journey of travelers who find themselves in a situation where there is no outgoing1104

link to move forward. In practice, if a passenger encounters a situation when there is no bus1105

available at the stop, then they either walk or use another mode of transportation to get to their1106

destination. We only assume walking in our assignment, although, one can consider other modes of1107

transportation. In the case of capacitated assignment, we create transfer links from node i to other1108

nodes in connecting nodes for which there exists at least one arrival time instance so that transfer1109

can be made successfully (i.e., with positive probability) and provide waiting time less than δ3. In1110

this case, we compulsorily create walking links to various destinations as there may not be sufficient1111

capacity in the considered transfer options.1112
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Algorithm 6 Creation of transfer links

1: procedure CreateTransfers

2: Inputs: A
′
t, assignment type

3: Output: At ▷ Set of final transfer nodes

4: (Initialize) At ← ϕ

5: transfer nodes← {i ∈ N : ∃j ∈ FS(i) s.t. (i, j) ∈ A
′
t}

6: for i ∈ transfer nodes do

7: connecting routes← {r(j) : (i, j) ∈ A
′
t}

8: for r̂ ∈ connecting routes do

9: connecting nodes← {j ∈ FS(i) : (i, j) ∈ A
′
t, r(j) == r̂}

10: Sort nodes in connecting nodes in the increasing order of their scheduled departure

time

11: Find the first node m in connecting nodes for which ∃t′ ∈ t̃k(i)(i), t
′′ ∈ t̃k(m)(m), s.t.

t
′
+ wij ≤ t

′′
, p̃i(t

′
) > 0, p̃m(t

′′
) > 0.

12: if assignment type == “uncapacitated” then

13: Find the first node n in connecting nodes for which ∀t′ ∈ t̃k(i)(i), t
′′ ∈ t̃k(n)(n),

s.t. t
′
+ wij ≤ t

′′
, p̃i(t

′
) > 0, p̃n(t

′′
) > 0, and

∑
t′∈t̃k(i)(i)

∑
t′′∈t̃k(n)(n)

p̃i(t
′
)p̃n(t

′′
) = 1.

14: if there is no such n then

15: n is the last node in connecting nodes

16: Append all the links from (i,m) to (i, n) to At

17: Create walking links from node i to all d ∈ D if they do not exist.

18: else

19: Append all the links from (i,m) to (i, n) to At

20: else if assignment type == “capacitated” then

21: Find first node n in connecting nodes for which ∀t′ ∈ t̃k(i)(i), t
′′ ∈ t̃k(n)(n), s.t.

t
′
+ wij ≤ t

′′
, p̃i(t

′
) > 0, p̃n(t

′′
) > 0, and t

′′ − t
′ − wij ≤ δ3

22: if there is no such n then

23: n is the last node in connecting nodes

24: Append all the links from (i,m) to (i, n) to At

25: else

26: Append all the links from (i,m) to (i, n) to At

27: Create walking links from node i to all d ∈ D if they do not exist.

28: else

29: Raise error

Appendix B Proofs1113

Proof of Lemma 1 We will show this by deriving the KKT conditions of the assignment pro-1114

gram (8). Let us associate dual variables {Jd(i, t, θ)}∀θ∈Θi(t),∀t∈t̃k(i)(i),
∀i∈N,∀d∈D

, {Jd(o, t, θ)}∀θ∈Θo(t),∀t∈T,
∀o∈O,∀d∈D

,1115
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{Jd(g)}∀g∈G:dg=d,
∀d∈D

, {Jd(d)}∀d∈D, {σd(i, t, θ, j)} ∀j∈u(i,t,θ),
∀(i,t,θ)∈S,∀d∈D

, and {λd
gt}∀t∈[tED

g ,tED
g +δ3],

∀g∈G,∀d∈D

to the con-1116

straints (8b)-(8g) respectively. The, the Lagrangian of (8) can be written as:1117

1118

L(V,v,J, σ, λ) =
∑
d∈D

 ∑
(i,t,θ)∈S

∑
j∈u(i,t,θ)

vd(i, t, θ, j) ∗ cθij +1119

1120

∑
∀θ∈Θi(t),

∀t∈t̃k(i)(i),∀i∈N

Jd(i, t, θ) ∗

pθ
∑

(k,t
′
,θ

′
)∈S\{d}:i∈u(k,t′ ,θ′ )

& t=t
′
+cθ

′

ki

vd(k, t
′
, θ

′
, i)−

∑
j∈u(i,t,θ)

vd(i, t, θ, j)

+1121

1122

∑
∀θ∈Θo(t),∀t∈T,∀o∈O

Jd(o, t, θ) ∗

pθ
∑

g∈G:og=o &

t∈[tED
g ,tED

g +δ3]

V d
gt −

∑
j∈u(o,t,θ)

vd(o, t, θ, j)

 +1123

1124

∑
∀g∈G:dg=d

Jd(g)

d
ogd
g −

∑
t∈[tED

g ,tED
g +δ3]

V d
gt

+ Jd(d) ∗


∑

g∈G:dg=d

dogd −
∑

(k,t
′
,θ

′
)∈S\{d}:

d∈u(k,t′ ,θ′ )

vd(k, t
′
, θ

′
, d)

−1125

1126 ∑
∀j∈u(i,t,θ),∀(i,t,θ)∈S

σd(i, t, θ, j) ∗ vd(i, t, θ, j)−
∑

∀t∈[tED
g ,tED

g +δ3],∀g∈G

λd
gt ∗ V d

gt

1127

1128

The KKT conditions are given below:1129

1130

1. Primal feasibility : (8b)-(8g)1131

2. Dual feasibility :1132

σd
i,t,θ,j ≥ 0,∀j ∈ u(i, t, θ),∀(i, t, θ) ∈ S,∀d ∈ D (18)

λd
gt ≥ 0, ∀t ∈

[
tED
g , tED

g + δ3
]
,∀g ∈ G,∀d ∈ D (19)

3. Complementary slackness:1133

vd(i, t, θ, j) ∗ σd(i, t, θ, j) = 0,∀j ∈ u(i, t, θ),∀(i, t, θ) ∈ S

V d
gt ∗ λd

gt = 0,∀t ∈
[
tED
g , tED

g + δ3
]
, ∀g ∈ G, ∀d ∈ D

4. Gradient of the Lagrangian wrt primal variables vanishes:1134

1135

∂L(V,v,J, σ, λ)

∂vd(i, t, θ, j)
= cθij+

∑
θ′∈Θj(t)

pθ
′
Jd(j, t+cθij , θ

′
)−Jd(i, t, θ)−σd(i, t, θ, j) = 0, ∀j ∈ u(i, t, θ), ∀(i, t, θ) ∈1136
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S,∀d ∈ D1137

1138

∂L(V,v,J, σ, λ)

∂V d
gt

=
∑

θ∈Θog (t)

pθJd(o, t, θ)− Jd(g)− λd
gt = 0, ∀t ∈

[
tED
g , tED

g + δ3
]
,∀g ∈ G,∀d ∈1139

D1140

1141

Using (18) and (19), we can write above two equations as:1142

1143

cθij +
∑

θ′∈Θj(t)

pθ
′
Jd(j, t+ cθij , θ

′
)− Jd(i, t, θ) ≥ 0,∀j ∈ u(i, t, θ),∀(i, t, θ) ∈ S,∀d ∈ D (20a)

∑
θ∈Θog (t)

pθJd(o, t, θ)− Jd(g) ≥ 0, ∀t ∈
[
tED
g , tED

g + δ3
]
,∀g ∈ G,∀d ∈ D (20b)

(20a) and (20b) can further be written as:1144

Jd(i, t, θ) = min
j∈u(i,t,θ)

cθij +
∑

θ′∈Θj(t)

pθ
′
Jd(j, t+ cθij , θ

′
)

 , ∀(i, t, θ) ∈ S,∀d ∈ D (21a)

Jd(g) = min
t∈[tED

g ,tED
g +δ3]

 ∑
θ∈Θog (t)

pθJd(o, t, θ)

 , ∀g ∈ G, ∀d ∈ D (21b)

(21a) and (21b) are the Bellman equations for finding the optimal policies given in (2) and (7)1145

respectively. This completes our proof.1146

Appendix C Example problem1147

C.1 Uncapacitated assignment1148

For the example given in Figure 1, let us compute the optimal cost functions and optimal policy

for destination d. Clearly, Ĵ∗(d) = 0. Ĵ∗(C1, 17) = 1 ∗ (1 + 0) = 1, Ĵ∗(C1, 23) = 1 ∗ (1 + 0) = 1,
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Ĵ∗(C2, 16) = 1 ∗ (1 + 0) = 1, Ĵ∗(C2, 18) = 1 ∗ (1 + 0) = 1, and Ĵ∗(C2, 23) = 1 ∗ (1 + 0) = 1.

Ĵ∗(D2, 3) = 1 ∗ (13 + Ĵ∗(C2, 16)) = 1 ∗ (13 + 1) = 14

Ĵ∗(D2, 5) = 1 ∗ (13 + Ĵ∗(C2, 18)) = 1 ∗ (13 + 1) = 14

Ĵ∗(D2, 10) = 1 ∗ (13 + Ĵ∗(C2, 23)) = 1 ∗ (13 + 1) = 14

Ĵ∗(B1, 2) = 0.2 ∗min{15 + Ĵ∗(C1, 17), 1 + Ĵ∗(D2, 3)}+ 0.3 ∗min{15 + Ĵ∗(C1, 17), 3 + Ĵ∗(D2, 5)}

+ 0.5 ∗min{15 + Ĵ∗(C1, 17), 8 + Ĵ∗(D2, 10)}

= 0.2 ∗ 15 + 0.3 ∗ 16 + 0.5 ∗ 16 = 15.8

Ĵ∗(B1, 8) = 0.5 ∗min{15 + Ĵ∗(C1, 15 + 8),∞}+ 0.5 ∗min{15 + Ĵ∗(C1, 15 + 8), 2 + Ĵ∗(D2, 8 + 2)}

= 0.5 ∗ 16 + 0.5 ∗ 16 = 16

Ĵ∗(A1, 0) = 0.6 ∗ (2 + 15.8) + 0.4 ∗ (8 + 16) = 20.28

Ĵ∗(E2, 0) = 0.2 ∗ (3 + 14) + 0.3 ∗ (5 + 14) + 0.5 ∗ (10 + 14) = 21.1

Ĵ∗(o, 0) = min{20.28, 21.1} = 20.28

After computing the expected cost to go from various nodes at various times, one can evaualte

the optimal policy by comparing these optimal costs. These are evaluated below:

µ∗(o, 0, {0, 0}) = {A1}

µ∗(A1, 0, {2}) = {B1}, µ∗(A1, 0, {8}) = {B1}

µ∗(E2, 0, {3}) = {D2}, µ∗(E2, 0, {5}) = {D2} µ∗(E2, 0, {10}) = {D2}

µ∗(B1, 2, {15, 1}) = {D2}, µ∗(B1, 2, {15, 3}) = {C1} µ∗(B1, 2, {15, 8}) = {C1}

µ∗(B1, 8, {15,∞}) = {C1}, µ∗(B1, 8, {15, 2}) = {D2, C1}

µ∗(D2, 3, {13}) = {C2}, µ∗(D2, 5, {13}) = {C2} µ∗(D2, 10, {13}) = {C2}

µ∗(C1, 17, {1}) = {d}, µ∗(C1, 23, {1}) = {d}

µ∗(C2, 16, {1}) = {d}, µ∗(C2, 18, {1}) = {d} µ∗(C2, 23, {1}) = {d}

Let us assume only one group of 100 passengers moving from o to d. For the sake of simplicity,1149

we do not consider any arrival time penalties. Obviously, t∗ = 0. Further, we can evaluate the1150

values of transitioning flow at various states as below:1151
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v(o, 0, {0, 0}, A1) = 100 v(o, 0, {0, 0}, E2) = 0

v(A1, 0, {2}, B1) = 100 ∗ 0.6 = 60, v(A1, 0, {8}, B1) = 100 ∗ 0.4 = 40

v(E2, 0, {3}, D2) = 0, v(E2, 0, {5}, D2) = 0 v(E2, 0, {10}, D2) = 0

v(B1, 2, {15, 1}, C1) = 0, v(B1, 2, {15, 1}, D2) = 0.2 ∗ 60 = 12

v(B1, 2, {15, 3}, C1) = 0.3 ∗ 60 = 18, v(B1, 2, {15, 3}, D2) = 0

v(B1, 2, {15, 8}, C1) = 0.5 ∗ 60 = 30 v(B1, 2, {15, 8}, D2) = 0

v(B1, 8, {15,∞}, C1) = 0.5 ∗ 40 = 20, v(B1, 8, {15,∞}, D2) = 0

v(B1, 8, {15, 2}, C1) = 0.5 ∗ 0.5 ∗ 40 = 10, v(B1, 8, {15, 2}, D2) = 0.5 ∗ 0.5 ∗ 40 = 10

v(D2, 3, {13}, C2) = 12, v(D2, 5, {13}, C2) = 0 v(D2, 10, {13}, C2) = 10

v(C1, 17, {1}, d) = 48, v(C1, 23, {1}, d) = 30

v(C2, 16, {1}, d) = 12, v(C2, 18, {1}, d) = 0 v(C2, 23, {1}, d) = 10

Computing the average link flow on various links using (9), we have, v(o,A1) = 100, v(o,E2) = 0,1152

v(A1, B1) = 100, v(E2, D2) = 0, v(B1, D2) = 12 + 20 = 22, v(B1, C1) = 78, v(D2, C2) = 22,1153

v(C1, d) = 78, v(C2, d) = 22.1154

C.2 Network loading for capacitated assignment1155

Using the policy computed in the previous sub-section, we evaluate the route choice probabilities1156

as below:1157

P(o,0,{0,0},{1,1}),A1
= 1 P(o,0,{0,0},{1,1}),E2

= 0

P(o,0,{0,0},{0,1}),E2
= 1

P(A1,0,{2},{1}),B1
= 1, P(A1,0,{8},{1}),B1

= 1

P(E2,0,{3},{1}),D2
= 1, P(E2,0,{5},{1}),D2

= 1 P(E2,0,{10},{1}),D2
= 1

P(B1,2,{15,1},{1,1}),C1
= 0, P(B1,2,{15,1},{1,1}),D2

= 1

P(B1,2,{15,3},{1,1}),C1
= 1, P(B1,2,{15,3},{1,1}),D2

= 0

P(B1,2,{15,8},{1,1}),C1
= 1 P(B1,2,{15,8},{1,1}),D2

= 0

P(B1,8,{15,∞},{1,0}),C1
= 1,

P(B1,8,{15,2},{1,1}),C1
= 0.5, P(B1,8,{15,2},{1,1}),D2

= 0.5

P(D2,3,{13},{1}),C2
= 1, P(D2,5,{13},{1}),C2

= 1 P(D2,10,{13},{1}),C2
= 1

P(C1,17,{1},{1}),d = 1, P(C1,23,{1},{1}),d = 1

P(C2,16,{1},{1}),d = 1, P(C2,18,{1},{1}),d = 1 P(C2,23,{1},{1}),d = 1

Further, assume that the capacity of both trips is 60. For passenger loading, let us process the1158
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nodes in topological order. For node 1, we have, Vn(o, 0) = 100. First, initialize π(o,0,{0,0},{1,1}) = 1.1159

The accessing flow and residual capacities of outgoing links are ṽo,A1 = 100, ṽo,E2 = 0 and ũo,A1 =1160

60, ũo,E2 = 60. As the flow trying to access link (o,A1) is more than its residual capacity, we have1161

β = 0.6. Since, we have β = 0.6, we have to run more than 1 iteration of the ”while loop” to finish1162

the loading at node A1. As we know that P(o,0,{0,0},{1,1}),A1
= 1, P(o,0,{0,0},{1,1}),E2

= 0, we have1163

v(o,0,{0,0},{1,1}),A1
= 0.6 ∗ 100 = 60, v(o,0,{0,0},{1,1}),E2

= 0. Since all the flow that reaches A1 want1164

to continue on the same route, we assign Vp(A1, 0) = 60. This gives us π(o,0,{0,0},{1,1}) = 0.6 and1165

π(o,0,{0,0},{0,1}) = 0.4. After updating the state availability probabilities, we now run the second1166

iteration of the while loop. The accessing flow and residual capacities of available outgoing links1167

are ṽo,E2 = 40 and ũo,E2 = 60. Therefore, β = 1. This means that all flow can access their first1168

available choice, i.e., v(o,0,{0,0},{0,1}),E2
= 1.0 ∗ 40 = 40. Since all the flow that reaches E2 want to1169

continue on the same route, we assign Vp(E2, 0) = 40.1170

1171

The next node in the topological order is A1. Since all the flow that needs to be assigned1172

at this node is priority flow, we have v(A1,0,{2},{1}),B1
= 0.6 ∗ 60 = 36 and v(A1,0,{8},{1}),B1

=1173

0.4 ∗ 60 = 24. This makes Vp(B1, 2) = 0.8 ∗ 36 = 28.8 and Vn(B1, 2) = 0.2 ∗ 36 = 7.2. Similarly,1174

Vp(B1, 8) = 24 ∗ 0.5 ∗ 1 + 24 ∗ 0.5 ∗ 0.5 = 18 and Vn(B1, 8) = 6. Processing the node E2, we have1175

v(E2,0,{3},{1}),D2
= 0.2∗40 = 8, v(E2,0,{5},{1}),D2

= 0.3∗40 = 12, and v(E2,0,{10},{1}),D2
= 0.5∗40 = 20.1176

Therefore, Vp(D2, 3) = 8, Vp(D2, 5) = 12, and Vp(D2, 10) = 20.1177

1178

The next node in the topological order is B1. This is an important node as it has both pri-1179

ority as well as non-priority flow to assign. Let’s start with the assignment of priority flow. We1180

have, v(B1,2,{15,1},{1,1}),C1
= 28.8 and v(B1,8,{15,1},{1,1}),C1

= 18. Clearly, Vp(C1, 17) = 28.8 and1181

Vp(C1, 23) = 18. Next, we process the non-priority flow. We have accessing flow ṽ(B1,D2) = 7.2+6 =1182

13.2, residual capacity ũ(B1,D2) = 60 − 40 = 20, and β = 1. This gives v(B1,2,{15,1},{1,1}),D2
=1183

7.2 and v(B1,8,{15,2},{1,1}),D2
= 6. Following the same procedure, we have, v(D2,3,{13},{1}),C2

=1184

15.2, v(D2,3,{5},{1}),C2
= 12, v(D2,3,{10},{1}),C2

= 26.1185

1186

Calculating the average flow, we have, v(o,A1) = 60, v(o,E2) = 40, v(A1, B1) = 60, v(E2, D2) =1187

40, v(B1, D2) = 13.2, v(B1, C1) = 46.8, v(D2, C2) = 53.2, v(C1, d) = 46.8, v(C2, d) = 53.2.1188
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Appendix D Notations used in the article1189

Table 3: Sets, parameters, decision variables and functions used in the current article

Sets

G(N,A) ≜ SB transit network where, N denotes the set of nodes and A denotes the set of links

T ≜ Set of time intervals during the study period

B ≜ Set of transit stops/stations

R ≜ Set of transit routes

K ≜ Set of transit trips

O ≜ Set of origins

D ≜ Set of destinations

B ≜ Set of transit nodes

G ≜ Set of passenger groups

Aa, Av, At ≜ Set of access/egress, in-vehicle, and transfer links

FS(i), BS(i) ≜ Set of outgoing and incoming links

Θi(t) ≜ Set of possible information vectors at node i and time t

Xθ
i (t) ≜ Set of availability vectors at node i, time t, and information θ

S ≜ State space in uncapacitated assignment

SC ≜ State space in capacitated assignment

Parameters

δ0, δ1, δ2, δ3 ≜ Maximum acceptable time for access, egress, transferring, and waiting.

tED
g , tEA

g , tLAg ≜ Earliest departure, earliest arrival, and latest arrival time of group g

dodg ≜ Demand from o to d of group g

cθij ≜ Travel time between i and j for information θ

pθ ≜ Probability of observing information θ

η1, η2 ≜ Early and late arrival penalty
uij = Capacity of link (i, j)

Decision Variables

vd(s, j) = Number of passengers going to destination d arriving at state s taking action j
V d
gt = Number of passengers going to destination d of group g departing at time t

vij = Aggregated average passenger flow on link (i, j)
t∗g = Optimal departure time for group g

πx = Probability of observing availability vector x
ϵ = Tolerance parameter used for the convergence of MSA algorithm.
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Functions

t̂k = Arrival time of transit trip at a stop

t̃k = Possible arrival times of transit trip at a stop

p̃i(t) = Probability of bus arriving at node i at time t

k(i) = Trip associated with transit node i

r(i) = Route associated with transit node i

w(i, j) = Walking time between node i and j

γk(i) = Sequence of node i for trip k

µ = A stationary policy that specifies action to take at every node

J = Expected cost function

Q(s, j) = Expected cost of taking action j at state s

P,R = Route choice and departure time choice probability function

C(P,R) = Expected cost of choice probability vector (P,R)

1190

1191
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