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Unconstrained problems

To minx f(x), where f is convex and differentiable, we generally adopt
an iterative procedure.

▶ Start with some initial point x(0) and then generate a sequence of
points {xk}.

▶ We want improving objective values in each iteration i.e.,
f(x(k+1)) < f(x(k)).

▶ Hopefully, our sequence of points {x(k)} will converge to a local
minimizer x∗ (or global minimizer).
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Descent methods

General procedure
From x(0), we generate a sequence of points using the following
procedure:

x(k+1) = x(k) + tkd
(k)

where, d(k) is called the search direction (must be descent direction1 i.e.,
∇f(x(k))Td(k) < 0) and tk is called the step size. Continue until a
stopping criterion is satisfied.

Line search types

▶ Exact line search tk = argmint>0{f(x(k) + td(k))} (can be done
using Bisection method)

▶ Backtracking line search For 0 < α < 0.5 and 0 < β < 1

- Start with t = 1, update t := βt
- until f(x+ td) ≤ f(x) + tα∇f(x)Td

1By Taylor expansion f(x(k) + tkd
(k)) ≈ f(x(k)) + tk∇f(x(k))Td(k). We need

to choose d(k) such that ∇f(x(k))Td(k) < 0
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Gradient descent method

initialize x(0) ∈ dom(f). Set k = 0 and tolerance ϵ > 0
repeat

1. Evaluate d(k) = −∇f(x(k)) (check if this is a decent direction)

2. Use a line search method to evaluate tk

3. Update x(k+1) = x(k) + tkd
(k); Set k := k + 1.

4. Go back to Step 1 until ∥∇f(x(k))∥ ≤ ϵ in which case output x(k)

as the solution.

Remark. Gradient method is guaranteed to converge to a local
minimizer. As we know if f(x) is convex, local is also global.
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Newton’s method

In this method, at any point x(k), we approximate the objective function
f(x) by its second order Taylor series expansion:

f(x) ≈ f(x(k))+∇f(x(k))T (x−x(k))+
1

2
(x−x(k))T∇2f(x(k))(x−x(k))

(1)
We minimize (1) to get

x∗ = x(k) − [∇2f(x(k))]−1∇f(x(k)) (2)

In Newton’s method, the search direction (also called Newton’s step) is:

d(k) = −[∇2f(x(k))]−1∇f(x(k)) (3)

Question: Is this a descent direction? Answer: Yes, because
∇f(x(k))Td(k) = −∇f(x(k))T [∇2f(x(k))]−1∇f(x(k)) < 0 since
∇2f(x(k)) is positive definite for strictly convex f(x)
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Newton’s method

initialize x(0) ∈ dom(f). Set k = 0 and tolerance ϵ > 0
repeat

1. Evaluate d(k) = −[∇2f(x(k))]−1∇f(x(k))

2. Use a line search method to evaluate tk

3. Update x(k+1) = x(k) + tkd
(k); Set k := k + 1.

4. Go back to Step 1 until ∥∇f(x(k))∥ ≤ ϵ in which case output x(k)

as the solution.

6



A few remarks

Gradient method

▶ No matter where it starts, it will always converge to a local
minimizer.

▶ It is easy to implement.

▶ Only need to know the first-order (gradient) information

▶ Linear convergence rate

Newton’s method

▶ Sensitive to the initial point

▶ Require second-order information (second-order derivative)

▶ Quadratic convergence rate (much faster than the gradient)
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Thank you!
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