
Path-based algorithms for solving UE

Pramesh Kumar

IIT Delhi

September 21, 2025



FW criticism

▶ It treats all the O-D pairs equally.
– different O-D pairs will require different fraction of flow to be shifted

to shortest path. However, F-W uses same λ for each O-D pair.
▶ Target vectors y are restricted to extreme points of the feasible

space.
– This creates “zig-zag” behavior near the optimal solution.
– CFW tries to resolve this issue up to certain extent but it still uses

fairly restricted target vectors.
▶ It is unable to erase cycle flows.

1

3

2

4

3

7

3 7

3

7

Figure: Persistent cycle in F-W1

1Figure 6.8 of BLU book
2



General framework of path-based methods

Path-based method keep track all the used path for each O-D pair, i.e.,
Π̂rs = {π ∈ Πrs | hπ > 0},∀(r, s) ∈ Z2

1. Initialize Π̂rs ← ϕ, ∀(r, s) ∈ Z2

2. Find the shortest path π∗
rs between each O-D pair (r, s). If

π∗
rs /∈ Π̂rs, then Π̂rs ← Π̂rs ∪ {π∗

rs}.
3. For each O-D pair, shift travelers among paths so as to get closer to

UE.

4. Update travel times and check if the convergence has reached. If
converged, stop, otherwise, go to step 2.

3



Gradient projection method

▶ In this method, we update the path flows by taking a step in the
opposite direction of gradient. However, this can result in infeasible
path flows which we resolve by projecting the updated path flows on
to the feasible path flow space H.

▶ We avoid storing all the paths into computer memory and generate
sequentially as we need them. Such procedure is called column
generation procedure.

▶ Also, to make the projection easy, we need to make some changes to
the Beckmann’s function. For this purpose, define basic path π̂rs

between an O-D pair (r, s) ∈ Z2 as the path with minimum travel
time between (r, s) ∈ Z2. Define other paths π ̸= π̂rs : π ∈ Πrs as
non-basic paths.

▶ The flow conservation constraints can be written as:

hπ̂rs = drs −
∑

π∈Πrs:π ̸=π̂rs

hπ (1)

4



Gradient projection method

The Beckmann’s formulation in terms of path flows is given by:

ZUE =minimize
h

∑
(i,j)∈A

∫ ∑
(r,s)∈Z2

∑
π∈Πrs

δπijh
π

0

tij(x)dx (2a)

subject to
∑

π∈Πrs

hπ = drs,∀(r, s) ∈ Z2 (2b)

hπ ≥ 0,∀π ∈ Π (2c)

5



Writing the objective function in terms of basic and non-basic path flows,∑
(i,j)∈A

∫ ∑
(r,s)∈Z2

∑
π∈Πrs

δπijh
π

0

tij(x)dx

=
∑

(i,j)∈A

∫ ∑
(r,s)∈Z2

(
δπ̂rs
ij hπ̂rs+

∑
π∈Πrs:π ̸=π̂rs

δπijh
π

)
0

tij(x)dx

=
∑

(i,j)∈A

∫ ∑
(r,s)∈Z2

(
δπ̂rs
ij

(
drs−

∑
π∈Πrs:π ̸=π̂rs

hπ

)
+

∑
π∈Πrs:π ̸=π̂rs

δπijh
π

)
0

tij(x)dx

=
∑

(i,j)∈A

∫ ∑
(r,s)∈Z2

(
δπ̂rs
ij drs+

∑
π∈Πrs:π ̸=π̂rs

(δπij−δπ̂rs
ij )hπ

)
0

tij(x)dx

The Beckmann’s formulation (2) can be restated as:

ZUE =minimize
h≽0

∑
(i,j)∈A

∫ ∑
(r,s)∈Z2

(
δπ̂rs
ij drs+

∑
π∈Πrs:π ̸=π̂rs

(δπij−δπ̂rs
ij )hπ

)
0

tij(x)dx

(3a)
6



Let F (h) =
∑

(i,j)∈A

∫ ∑
(r,s)∈Z2

(
δπ̂rs
ij drs+

∑
π∈Πrs:π ̸=π̂rs

(δπij−δπ̂rs
ij )hπ

)
0 tij(x)dx.

∂F

∂hπ
=

∑
(i,j)∈A

(δπij − δπ̂rs
ij )tij(xij) = cπ − cπ̂rs ,∀π ∈ Πrs : π ̸= π̂rs,∀(r, s) ∈ Z2

∂2F

∂hπ2 =
∑

(i,j)∈A

(δπij − δπ̂rs
ij )t

′
ij(xij)

∂xij

∂hπ

=
∑

(i,j)∈A

(δπij − δπ̂rs
ij )t

′
ij(xij)

∂

∂hπ

 ∑
(r,s)∈Z2

δπ̂rs
ij drs +

∑
π∈Πrs:π ̸=π̂rs

(δπij − δπ̂rs
ij )hπ


=

∑
(i,j)∈A

(δπij − δπ̂rs
ij )2t

′
ij(xij)

=
∑

(i,j)∈Ã

t
′
ij(xij), ∀π ∈ Πrs : π ̸= π̂rs, ∀(r, s) ∈ Z2

where, Ã = {(i, j) ∈ A : (i, j) ∈ π ∪ π̂rs, (i, j) /∈ π ∩ π̂rs, (i, j)}, set of links
which are in either π or π̂rs but not both.

7



Gradient projection method

The path flows are updated using the quasi-Newton step size. In any
iteration k + 1,

hk+1 = hk − t∇hkF

hk+1 = hk − (∇2
hkF )−1∇hkF

For a given O-D pair (r, s) ∈ Z2, for any path π ∈ Πrs : π ̸= π̂rs,

(hπ)k+1 = (hπ)k − cπ − cπ̂rs∑
(i,j)∈Ã

t
′
ij(xij)

To project it on non-negative path flow space,

(hπ)k+1 = max

0, (hπ)k − cπ − cπ̂rs∑
(i,j)∈Ã

t
′
ij(xij)


8



1: procedure GradProj(G, t,d, tol)

2: Initialize Π̂rs ← ϕ, ∀(r, s) ∈ Z2

3: while gap > tol do
4: for r ∈ Z do
5: l∗, pred← Dijkstra(G, tk, r)
6: for s ∈ Z do
7: π̂rs ← TracePreds(G, pred, s)

8: if π̂rs /∈ Π̂rs then
9: Π̂rs ← Π̂rs ∪ {π̂rs}
10: end if
11: if Π̂rs == {π̂rs} then
12: hπ̂rs ← drs

13: else
14: for π ∈ Π̂rs\{π̂rs} do

15: (hπ)k+1 ← max

0, (hπ)k − cπ−cπ̂rs∑
(i,j)∈Ã

t
′
ij(xij)


16: end for
17: hπ̂rs ← drs −

∑
π∈Π̂rs\{π̂rs} h

π

18: end if
19: end for
20: end for
21: Update travel times
22: Remove paths which are no longer used for each O-D pair
23: Evaluate gap and k ← k + 1
24: end while
25: end procedure

9



There is another path-based method called projected gradient. In this
method, we first project the search direction onto feasible space and then
take a step towards that feasible direction. I encourage you to read this
from the BLU book (Section 6.3.2).

10



Suggested reading

▶ BLU book Chapter 6 Section 3

▶ Jayakrishnan, R., Wei T. Tsai, Joseph N. Prashker, and Subodh
Rajadhyaksha. A Faster Path-Based Algorithm for Traffic
Assignment. University of California Transportation Center, 1994.

11



Thank you!

12


