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Definitions

Definition (Vector). An array of scalars.

Definition (Vector Space). A vector space is a set V equipped with two
operations - addition and multiplication:

1. (Addition) For u,v ∈ V , we have u+ v ∈ V

2. (Scalar multiplication) For any scalar c ∈ R and u ∈ V , we have
cu ∈ V

Example(s). Rn, M = Rm×n, 0, etc.

Definition (Subspace). A non-empty subset S ⊂ V of a vector space is a
subspace iff for every x,y ∈ S and c, d ∈ R, we have cx+ dy ∈ S.

1. Geometric interpretation: If x,y ∈ S, then plane passing through
0,x, and y lies in S.

2. Intersection of finite number of subspaces is a subspace.

3. If S is a linear subspace, then there exists A ∈ Rm×n such that
S = {x ∈ Rn | Ax = 0}
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Fundamental subspaces

Definition (Column space or range or image). Column space of matrix
A ∈ Rm×n denoted by C(A) or R(A) or img(A) is defined as
C(A) = {Ax | x ∈ Rn}, i.e., collection of all linear combinations of
columns of A.

Definition (Null space or kernel). Null space of a matrix A ∈ Rm×n

denoted by N (A) or ker(A) is defined as N (A) = {x ∈ Rn | Ax = 0}.

Example C
([

1 0
0 1

])
is R2 and N

([
1 2
3 6

])
= c

[
−2
1

]
, where c is a

scalar.

Remark. The other two fundamental subspaces are rowspace or coimage
and left nullspace or cokernel defined as C(AT ) and N (AT ) respectively.
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Matrices

Definition (Matrix). A rectangular array of scalars
A = {aij}i=1,··· ,m,j=1,··· ,n, aij ∈ R.

Definition (Transpose). The transpose of a matrix A is matrix AT

produced by interchanging the rows with columns.

Definition (Identity matrix). A matrix A ∈ Rn×n with aii = 1,∀i and
aij = 0,∀i ̸= j

Definition (Symmetric matrix). A square matrix A = {aij} with
aij = aji,∀i, j, i.e., transpose A = AT is a symmetric matrix. The set of
symmetric matrices of size n× n is denoted by Sn.

Definition (Positive (semi) definite matrix). A symmetric matrix with all
positive (non-negative) eigen values. A matrix A ∈ Sn. is positive (semi)
definite (p.s.d.) if xTAx > 0 (xTAx ≥ 0) for any nonzero vector x. The
set pf (semi) positive definite matrices of size n× n are denoted as (Sn+)
Sn++.

4



Inner products and norms

Definition (Inner product). An inner product on real vector space V is a
pairing that takes two vectors x,y ∈ V and outputs a real number
⟨x,y⟩ = xTy ∈ R. The inner product should satisfy three axioms with
x,y, z ∈ V and scalars λ1, λ2 ∈ R.
1. Bilinearity : ⟨λ1x+ λ2y, z⟩ = λ1⟨x, z⟩+ λ2⟨y, z⟩

⟨z, λ1x+ λ2y⟩ = λ1⟨z,x⟩+ λ2⟨z,y⟩
2. Symmetry : ⟨x,y⟩ = ⟨y,x⟩
3. Positivity : ⟨x,x⟩ > 0 whenever x ̸= 0, while ⟨0,0⟩ = 0.

Remark. A vector space equipped with inner product is called an inner
product space. Given an inner product, the associated norm of a vector
x ∈ V is defined as

∥x∥ =
√

⟨x,x⟩ (1)

Remark. The standard inner product of two real matrices X,Y ∈ Rm×n

can be defined as ⟨X,Y ⟩ = trace(XTY ) =
∑n

j=1

∑n
i=1 Xij
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Cauchy-Schwarz inequality

Theorem

|⟨x,y⟩| ≤ ∥x∥∥y∥, for every x,y ∈ V (2)

Equality holds iff x,y are parallel vectors.

Proof.
One can prove it geometrically using the fact that xTy = ∥x∥∥y∥cosθ
and |cosθ| ≤ 1.
Other way : The case when y = 0 trivial. For y ̸= 0, let λ ∈ R. We have,

0 ≤ ∥x+λy∥2 = ⟨x+λy,x+λy⟩ = ⟨x,x⟩+2λ⟨x,y⟩+λ2⟨y,y⟩ = ∥x∥2+2λ⟨x,y⟩+λ2∥y∥2
(3)

with inequality holding only if x = −λy, which requires x and y to be
parallel vectors. Considering (3) to be quadratic function of λ, let’s

substitute minimum value of λ = − ⟨x,y⟩
∥y∥2 in (3).

0 ≤ ∥x∥2 − 2
⟨x,y⟩2

∥y∥2
+

⟨x,y⟩2

∥y∥2
= ∥x∥2 −

⟨x,y⟩2

∥y∥2
(4)

Rearranging this inequality, we have ⟨x,y⟩2 ≤ ∥x∥2∥y∥2. The equality
holds iff x,y are parallel or y = 0, which is of course parallel to every x.
Taking (positive) square root proves the result.
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The triangle inequality

Theorem
The norm associated with inner product satisfies triangle inequality

∥x+ y∥ ≤ ∥x∥+ ∥y∥, for all x,y ∈ V (5)

Equality holds iff x and y are parallel vectors.

Proof.
Other way : The case when y = 0 trivial. For y ̸= 0, let λ ∈ R. We have,

∥x+ y∥2 = ∥x∥2 + 2⟨x,y⟩+ ∥y∥2 ≤ ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2. (6)

Definition (Orthogonal vectors). Two vectors x,y ∈ V of inner product
space V are called orthogonal is their inner product vanishes, i.e.,
⟨x,y⟩ = 0.
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Norms

Definition (Norm). A function f : Rn 7→ R is called a norm if f is

1. Non-negative: f(x) ≥ 0,∀x ∈ Rn

2. Definite: f(x) = 0 iff x = 0

3. Homogeneous: f(tx) = |t|f(x),∀x ∈ Rn,∀t ∈ R

4. satisfies Triangle inequality : f(x+ y) ≤ f(x) + f(y),∀x,y ∈ Rn.

Examples:

1. lp norm, ∥x∥p = (
∑n

i=1 |xi|p)
1
p , 1 ≤ p ≤ ∞. Triangular inequality

for general p is known as Minkoswski’s inequality.

(
∑n

i=1 |xi + yi|p)
1
p ≤ (

∑n
i=1 |xi|p)

1
p + (

∑n
i=1 |yi|p)

1
p .

2. l0norm is not a norm. Why?
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Sets

Definition (Set). A collection of objects satisfying some conditions.

Definition (Interior point). An element x ∈ C ⊆ Rn is called an interior
point of C if ∃ϵ > 0 for which {y

∣∣ ∥y − x∥ ≤ ϵ} ⊆ C, i.e., a ball
centered at x of radius ϵ lies inside C.

Definition (Interior of a set). The set of all interior points of C is called
interior of C, denoted by int(C). A set is solid if it has nonempty interior.

Definition (Open set). A set C is open if all of its elements are interior
points, i.e., int(C) = C.

Definition (Closed set). A set C ⊆ Rn is closed if Rn\C is open.
Alternatively, a set C is closed iff for any convergent sequence {xk} ∈ S
with limit point x̄, we also have x̄ ∈ C1.
Definition (Closure of a set). The closure of a set C ⊆ Rn is defined as
cl(C) = Rn\int(Rn\C).

1A limit point x̄ of any convergent sequence should lie in the interior or on the
boundary of the set, otherwise ∃ϵ > 0 s.t. {x

∣∣ ∥x− x̄∥ < ϵ}} ∩ C = ϕ
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Compact sets and projections

Definition (Boundary of a set). The boundary of a set C ⊆ Rn is defined
as bd(C) = cl(C)\intC.

Remark. A set C is closed if it contains its boundary, i.e., bd(C) ⊆ C. It
is open if it contains no boundary points, i.e., bd(C) ∩ C = ϕ.

Definition (Bounded set).: A set C ⊆ R is a bounded if
∥x− y∥ ≤ ϵ,∀x,y ∈ C for some finite ϵ > 0.

Definition (Compact set). A set C is compact it is both closed as well as
bounded.

Definition (Projection of a point onto a set). The projection of a point
x ∈ Rn onto a set C ⊆ is point in C which is closest to x, i.e.,
projC(x) = argminy∈C{∥y − x∥}.

Definition (Projection of a set onto a space).Let C ⊆ Rn × Rp whose
feasible points are denoted by (x,y) with x ∈ Rn and y ∈ Rp. We define
the projection of set C onto the space of variables x as the set

projx(C) = {x ∈ Rn
∣∣ ∃y ∈ Rp with (x,y) ∈ C}
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Max, min, inf, sup

Definition (Maximum). Let S ⊆ R. We say that x is a maximum of S iff
x ∈ S and x ≥ y,∀y ∈ S.

Definition (Minimum). Let S ⊆ R. We say that x is a minimum of S iff
x ∈ S and x ≤ y,∀y ∈ S.

Definition (Bounds). Let S ⊆ R. We say that u is an upper bound of S
iff u ≥ x, ∀x ∈ S. Similarly, l is a lower bound of S iff l ≤ x,∀x ∈ S.

Definition (Supremum). Let S ⊆ R. We define the supremum of S
denoted by sup(S) to be the smallest upper bound of S. If no such
upper bound exists, then we set sup(S) = +∞.

Definition (Infimum). Let S ⊆ R. We define the infimum of S denoted
by inf(S) to be the largest lower bound of S. If no such lower bound
exists, then we set inf(S) = −∞

Remark. If x ∈ S such that x = sup(S), we say that supremum of S is
achieved (which means that there is a maximum to the problem). Similar
definition for whether infimum is achieved.
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Weierstrass Extreme Value Theorem

Theorem
Let X ⊆ Rn. A continuous function f : X 7→ R defined on a closed and
bounded set X attain a maximum and minimum value.

Proof (Bazaraa et al. (2006)).
We present the proof for minimum. A similar proof can be constructed
for maximum. Since f is continuous on X (which is both bounded and
closed), f is bounded below on X. Since S ̸= ϕ, there exists a greatest
lower bound l = inf{f(x)

∣∣ x ∈ X}. Let 0 < ϵ < 1, and consider the sets

Xk = {x ∈ X
∣∣ l ≤ f(x) ≤ l + ϵk} for each k = 1, 2, · · · . By the

definition of infimum Xk ̸= ϕ for each k, so we may construct a sequence
of points {xk} ∈ X by selecting a point xk ∈ Xk for each k = 1, 2, · · · .
Since X is bounded, there exists a convergent sequence {xk} 7→ x̄. By
closedness of X, we have x̄ ∈ X and by continuity of f , since
α ≤ f(xk) ≤ ϵk,∀k, we have α = limk 7→∞ f(xk) = f(x̄). We have
shown that infimum is achieved at x̄.
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Linear subspaces, affine sets, cones, convex sets

A set C ⊆ Rn is said to be

1. linear subspace iff ∀x,y ∈ C and λ1, λ2 ∈ R, we have
λ1x+ λ2y ∈ C.

2. cone iff ∀x ∈ C and λ ∈ R such that λ ≥ 0, we have λx ∈ C.

3. affine set iff ∀x,y ∈ C and λ1, λ2 ∈ R such that λ1 + λ2 = 1, we
have λ1x+ λ2y ∈ C (line passing through any two points in C lies
in C).

4. convex set iff ∀x,y ∈ C and λ1, λ2 ∈ R such that λ1, λ2 ≥ 0 and
λ1 + λ2 = 1, we have λ1x+ λ2y ∈ C (line segment between any
two points in C lies in C).
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Linear, conic, affine, and convex combination of vectors

For a given set of vectors x1,x2, · · · ,xk and scalars λ1, λ2, · · · , λk, the

weighted combination x =

k∑
i=1

λix
i is said to be

1. linear combination of vectors x1,x2, · · · ,xk if λ1, · · · , λk ∈ R
2. conic combination of vectors x1,x2, · · · ,xk if λ1, · · · , λk ∈ R and

λ1, · · · , λk ≥ 0.

3. affine combination of vectors x1,x2, · · · ,xk if λ1, · · · , λk ∈ R and∑k
i=1 λi = 1.

4. convex combination of vectors x1,x2, · · · ,xk if λ1, · · · , λk ∈ R
such λ1, · · · , λk ≥ 0 and

∑k
i=1 λi = 1.
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Hulls

Accordingly, we can define

1. Linear hull of set C denoted by lin(C) is minimal inclusion-wise
linear subspace containing C.

2. Conic hull of set C denoted by cone(C) is minimal inclusion-wise
cone containing C.

3. Affine hull of set C denoted by aff(C) is minimal inclusion-wise
affine set containing C.

4. Convex hull of set C denoted by conv(C) is minimal inclusion-wise
convex set containing C.
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Theorem
Let X be nonempty, closed convex set in Rn and y /∈ S. Then, there
exists a unique point x̄ ∈ X with minimum distance to y. Furthermore,
x̄ is also a minimizing point if and only if

(y − x̄)T (x− x̄) ≤ 0,∀x ∈ S

y
x

x̄
S
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Theorem
Let X be nonempty, closed convex set in Rn and y /∈ S. Then, there
exists a unique point x̄ ∈ X with minimum distance to y. Furthermore,
x̄ is also a minimizing point if and only if

(y − x̄)T (x− x̄) ≤ 0,∀x ∈ X

Proof (Bazaraa et al. (2006)).
Let us establish the first result. Since X ̸= ϕ, ∃x̃ ∈ X. Consider the set
X̃ = X ∩ {x ∈ X

∣∣ ∥y − x∥ ≤ ∥y − x̃∥}. The task of finding the closest

point inf{∥y − x∥
∣∣ x ∈ X} is equivalent to inf{∥y − x∥

∣∣ x ∈ X̃}. But
the latter involves finding a minimum of a continuous function over a
compact set, so by Weierstrass theorem, we have a minimum point
x̄ ∈ X which is closest to y.
To show uniqueness, suppose there exists another x̄

′ ∈ X such that

∥y − x̄∥ = ∥y − x̄
′∥ = α. Due to convexity of X, the point x̄+x̄

′

2 ∈ X
and using triangle inequality, we have∥∥∥∥∥y − x̄+ x̄

′

2

∥∥∥∥∥ ≤ 1

2
∥y − x̄∥+ 1

2
∥y − x̄

′
∥ = α
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Proof contd.
The strict inequality cannot hold because it will contradict the fact that x̄ is
the closest point. Therefore, equality holds. Therefore, y − x̄ = λ(y − x̄

′
) for

some λ. Since ∥y − x̄∥ = ∥y − x̄
′
∥ = α, we have |λ| = 1. λ ̸= −1 because

otherwise y /∈ X. So, λ = 1, proving that x̄ = x̄
′
.

” ⇐= ” Let x ∈ X. Then,

∥y − x∥2 = ∥y − x̄+ x̄− x∥2 = ∥y − x̄∥2 + ∥x̄− x∥2 + 2(x̄− x)T (y − x̄)

Since ∥x̄− x∥2 ≥ 0 and (x̄− x)T (y − x̄) ≥ 0 by assumption, we have
∥y − x∥2 ≥ ∥y − x̄∥2 showing that x̄ is the minimizing point.
” =⇒ ” Assume that x̄ is the minimizing point, i.e.,
∥y− x∥2 ≥ ∥y− x̄∥2, ∀x ∈ X. Let x ∈ X and note that x̄+ λ(x− x̄) ∈ X for
λ ∈ [0, 1] by the convexity of X. Therefore,

∥y − (x̄+ λ(x− x̄))∥2 ≥ ∥y − x̄∥2

∥y − x̄∥2 + λ2∥x− x̄∥2 − 2λ(y − x̄)T (x− x̄) ≥ ∥y − x̄∥2

∥x− x̄∥2 − 2λ(y − x̄)T (x− x̄) ≥ 0

2(y − x̄)T (x− x̄) ≤ λ∥x− x̄∥2

due to dividing by λ ∈ [0, 1]. Let λ 7→ 0+, the result follows.
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Projection operator is nonexpansive

Theorem
Let X is a closed and convex set. Then the projection operator projx(X) is

nonexpansive, i.e., ∥projX(y)− projX(y
′
)∥ ≤ ∥y − y

′∥, ∀y,y′ ∈ Rn

Proof.
From previous theorem,

(y − projX(y))T (x− projX(y)) ≤ 0, ∀x ∈ X (7)

(y
′
− projX(y

′
))T (x− projX(y

′
)) ≤ 0, ∀x ∈ X (8)

These can be equivalently written as:

yT (x− projX(y)) ≤ (projX(y))T (x− projX(y)), ∀x ∈ X (9)

y
′T

(x− projX(y
′
)) ≤ (projX(y

′
))T (x− projX(y

′
)), ∀x ∈ X (10)

Putting x = projX(y
′
) into (9) and x = projX(y) into (10) and adding (9) and (10),

we get

(y − y
′
)T (projX(y

′
)− projX(y)) ≤ (projX(y

′
)− projX(y))T (projX(y)− projX(y

′
)) (11)

=⇒ (y − y
′
)T (projX(y)− projX(y

′
)) ≥ ∥(projX(y)− projX(y

′
))∥2 (12)

∥y − y
′
∥ ≥ ∥(projX(y)− projX(y

′
))∥ (13)

using Cauchy-Schwarz inequality. 19



Separating hyperplane theorem

Theorem
Suppose C and D are two disjoint convex sets i.e., C ∩D = ϕ. Then,
there exists a ̸= 0 and b such that

aTx ≤ b,∀x ∈ C and aTx ≥ b,∀x ∈ D

C

D

a

aTx ≥ b

aTx ≤ b

Figure: Separating Hyperplane Theorem
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Separation of a convex set and a point

Theorem
Let C be a nonempty convex set in Rn and y /∈ S. Then there exists a
nonzero vector a and a scalar b such that aTy > b and aTx ≤ b,∀x ∈ S.

Proof (Bazaraa et al. (2006)).
Using previous theorem, there is a unique minimizing point x̄ ∈ S such
that (x− x̄)T (y − x̄) ≤ 0,∀x ∈ S. Letting a = (y − x̄) ̸= 0 and
b = x̄T (y − x̄), we get aTx ≤ b,∀x ∈ S while
aTy− b = (y− x̄)Ty− x̄T (y− x̄) = ∥y− x̄∥2 > 0, which completes the
proof.
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Supporting hyperplane

Definition (Supporting hyperplane). Let S be nonempty set in Rn and let
x̄ ∈ bd(S). A hyperplane H = {x

∣∣ aT (x− x̄) = 0} is called a

supporting hyperplane of S at x̄. Equivalently, H = {x
∣∣ aT (x− x̄) = 0}

is a supporting hyperplane of S at x̄ ∈ bd(S) if aT x̄ = inf{aTx
∣∣ x ∈ S}

or aT x̄ = sup{aTx
∣∣ x ∈ S}

Theorem
Let S be a nonempty convex set in Rn and let x̄ ∈ bd(S). Then there
exists a hyperplane that supports S at x̄; i.e., there exists a nonzero
vector a such that aT (x− x̄) ≤ 0,∀x ∈ cl(S).
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Polyhedra

Definition (Hyperplane). {x ∈ Rn : aTx = b,a ̸= 0}

Definition (Halfspace). {x ∈ Rn : aTx ≥ b,a ̸= 0}

Definition (Polyhedron). A set P ⊆ Rn is called a polyhedron if P is the
intersection of a finite number of halfspaces. P = {x ∈ Rn : Ax ≤ b}

Definition (Polytope). A bounded polyhedron is called a polytope.
Question Is {x ∈ Rn : Ax = b,x ≥ 0} a polyhedron?

Definition (Extreme point). Let P be a polyhedron. Then, x ∈ P is an
extreme point of P if we cannot express x as a convex combination of
other points in P .
Question Is P = {x ∈ Rn

∣∣ Ax = b}, where A ∈ Rm×n and b ∈ Rm a
convex set?

Definition (Ray). Let P be a polyhedron. Then, r is a recession direction
or extreme ray of P , if, for every x̄ ∈ P , x̄+ λr ∈ P,∀λ ≥ 0.

Definition (Extreme ray). Let P be a polyhedron. Then, r ∈ P is an
extreme ray of P if we cannot express r as a conic combination of other
rays in P . 23



Minkowski-Weyl (representation) theorem for polyhedra

Theorem
Let P = {x ∈ Rn

∣∣ Ax = b}, where A ∈ Rm×n,b ∈ Rm. Further, let
v1, · · · ,vk be the extreme points of P and r1, r2, · · · , rh be the extreme
rays of S. Then, x ∈ S if and only if x can be expressed as

x =

k∑
j=1

λjv
j +

h∑
l=1

µlr
l

k∑
j=1

λj = 1

λj ≥ 0,∀j = 1, · · · , k
µl ≥ 0,∀l = 1, · · · , h

Remark. In case of a polyhedra corresponding to a network flow problem,
any feasible flow in a network can be decomposed into a sum of path
flows and cycle (circulation) flows. This result is also known as flow
decomposition theorem. 24



Functions

Consider a multivariable function f : Rn 7→ R
▶ Gradient of f at x

∇f(x) =


∂f(x)
∂x1

...
∂f(x)
∂xn


with ∂f(x)

∂xi
= limh 7→0

f(x+hei)−f(x)
h

, where ei is the ith unit vector

▶ Hessian matrix of f at x

∇2f(x) =
[
∂2f(x)
∂xi∂xj

]
n×n

Remark. If f is twice continuously differentiable then ∇2f is a symmetric matrix.

▶ Jacobian of a vector-valued function f(x) =

f1(x)...
fp(x)

 is


∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
∂fp(x)

∂x1

∂fp(x)

∂x2
· · · ∂fp(x)

∂xn


25



Monotonicity of functions

Definition (). Let X ⊆ Rn. A function f : X 7→ R is a

1. monotone on X if

[f(x1)− f(x2)]
T
(x1 − x2) ≥ 0,∀x1,x2 ∈ X (14)

2. strictly monotone on X if

[f(x1)− f(x2)]
T
(x1 − x2) > 0,∀x1,x2 ∈ X,x1 ̸= x2 (15)

3. strongly monotone on X if for some α

[f(x1)− f(x2)]
T
(x1 − x2) > α∥x1 − x2∥2,∀x1,x2 ∈ X,x1 ̸= x2

(16)
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Definition (Lipschitz Continuity). Let X ⊆ Rn. A function f : X 7→ R is
Lipschitz continuous on X if there exists L > 0 such that

∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥,∀x1,x2 ∈ X (17)

Definition (Contraction mapping). Let X ⊆ Rn. A function f : X 7→ R
is a contraction mapping on X if there exists 0 ≤ α ≤ 1 such that

∥f(x1)− f(x2)∥ ≤ α∥x1 − x2∥,∀x1,x2 ∈ X (18)

27



Convex function

▶ A function f : Rn 7→ R is a convex function if dom(f) is convex set
and if for all x1,x2 ∈ dom(f) and 0 ≤ λ ≤ 1, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

▶ (First order conditions) A differentiable function f : Rn 7→ R is a
convex function if and only if dom(f) is convex set and

f(x2) ≥ f(x1) +∇f(x1)
T (x2 − x1),∀x1,x2 ∈ dom(f)

The first order Taylor series approximation of f is a global
underestimator this function.

▶ (Second order conditions) A twice differentiable function
f : Rn 7→ R is a convex function if and only if dom(f) is convex set
and its Hessian is positive semidefinite, i.e.,

∇2f(x) ≽ 0,∀x ∈ dom(f)

Remark. A function is concave is −f is a convex function.
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Convex function

Theorem (Bazaraa et al. (2006))
Let X be a nonempty convex set. A function f : X 7→ Rn be a
differentiable function. Then, f is convex if and only if for each
x1,x2 ∈ X, we have

[∇f(x2)−∇f(x1)]
T
(x2 − x1) ≥ 0

Proof.
=⇒ Assume that f is convex, then using the first-order conditions, we
have

f(x2) ≥ f(x1) +∇f(x1)
T (x2 − x1),∀x1,x2 ∈ X (19)

f(x1) ≥ f(x2) +∇f(x2)
T (x1 − x2),∀x1,x2 ∈ X (20)

Adding (19) and (20) yields the required result.
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Convex function

contd.
⇐= Let x1,x2 ∈ X. By mean value theorem,

f(x2)− f(x1) = ∇f(x)T (x2 − x1) (21)

where, x = λx1 + (1− λ)x2 for some λ ∈ (0, 1). By assumption,

[∇f(x)−∇f(x1)]
T
(x− x1) ≥ 0

=⇒ (1− λ) [∇f(x)−∇f(x1)]
T
(x2 − x1) ≥ 0

=⇒ ∇f(x)T (x2 − x1) ≥ ∇f(x1)
T (x2 − x1)

=⇒ f(x2)− f(x1) ≥ ∇f(x1)
T (x2 − x1) using (21)

=⇒ f(x2) ≥ f(x1) +∇f(x1)
T (x2 − x1)

which is FOC for convexity of f .
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Relation between monotonicity and convexity

Theorem
Let F ≡ ∇f . Then,

1. F is monotone on X ⇐⇒ f is convex on X.

2. F is strictly monotone on X ⇐⇒ f is strictly convex on X.

3. F is strongly monotone on X ⇐⇒ f is strongly convex on X.
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Optimization Problem

Components of an optimization problem

▶ Decisions

▶ Constraints

▶ Objective

Optimization seeks to choose some decisions to optimize (maximize or
minimize) an objective subject to certain constraints.

32



Common Framework

Given f, gi, hi : Rn 7→ R

Z =minimize
x

f(x) (22a)

subject to gi(x) ≤ 0,∀i = 1, 2, ..., p (22b)

gj(x) ≥ 0,∀j = 1, 2, ..., q (22c)

hk(x) = 0,∀k = 1, 2, ..., r (22d)

▶ Decisions: x, Objective: f(x), and Constraints: (22b)-(22d)
▶ (22b), (22c), and (22d): set of ”≤”, ”≥”, and equality constraints
▶ X = {x ∈ Rn :

(22b)− (22d)}∩dom(f)∩p
i=1 dom(gi)∩q

j=1 dom(gj)∩r
k=1 dom(hk)

define the feasible region.
▶ Any x̂ satisfying all the constraints is a feasible solution.
▶ Any x∗ ∈ X satisfying f(x∗) ≤ f(x),∀x ∈ X is an optimal solution.
▶ f(x∗) is known as optimal objective value.

Remark. Above problem is a convex optimization problem if all functions
are convex and feasible region is a convex set.
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For convex problems, local optimal =⇒ global optimal

Definition (Local optimal solution). For an optimization problem
minx{f(x)

∣∣ x ∈ S}, x∗ is a local optimal solution if ∃ϵ > 0,

f(x∗) ≤ f(x), ∀x ∈ S ∩ {x
∣∣ ∥x− x∗∥ ≤ ϵ}

Theorem
For a convex optimization problem minx{f(x)

∣∣ x ∈ S}, a local optimal
solution x∗ is also a global optimal solution (i.e., f(x∗) ≤ f(x), ∀x ∈ S).

Proof.
Let’s assume that for a convex optimization problem, x∗ is local optimal
solution but it is not global optimal, i.e., ∃x̂ ∈ S such that f(x̂) < f(x∗). Let
0 < λ < 1, consider a point (λx̂+ (1− λ)x∗) such that
∥(λx̂+ (1− λ)x∗)− x∗∥ < ϵ. Note that (λx̂+ (1− λ)x∗) ∈ S since S is a
convex set. Since x∗ is local optimal solution, we have

f(λx̂+ (1− λ)x∗) ≥ f(x∗) (23)

Also, since f is a convex function,

f(λx̂+ (1− λ)x∗) ≤ λf(x̂) + (1− λ)f(x∗) < λf(x∗) + (1− λ)f(x∗) = f(x∗)

which is a contradiction from (23). 34



Optimality criterion for convex optimization problem

with differentiable objective function

Theorem
For a convex optimization problem minx{f(x)

∣∣ x ∈ S} with
differentiable f , x∗ ∈ S is optimal if and only if

∇f(x∗)T (y − x∗) ≥ 0,∀y ∈ S

−∇f(x)

x∗y

S

Remark. For unconstrained problems, we can choose sufficiently close
y = x− t∇f(x) to x, the above condition reduces to ∇f(x) = 0 (the
well known necessary and sufficient condition). 35



The Lagrangian

Consider the following convex optimization problem

Z∗
P =minimize

x
f0(x) (24a)

subject to fi(x) ≤ 0,∀i = 1, 2, ...,m (24b)

hk(x) = 0,∀k = 1, 2, ..., p (24c)

We define the Lagrangian L : Rn×Rm×Rp 7→ R associated with (24) as

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
k=1

νkhk(x)

where, {λi}mi=1 and {νk}pk=1 are the Lagrangian multipliers or dual
variables associated to constraints (24b) and (24c) respectively. We will
refer to (24) as the Primal problem.
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Lagrange dual function

Definition (Lagrange dual function). The Lagrange dual function
g : Rm × Rp 7→ R is defined as minimum value of L(x, λ, ν) over x

g(λ, ν) = inf
x∈F

{
f0(x) +

m∑
i=1

λifi(x) +

p∑
k=1

νkhk(x)

}
(25)

Remark. The Lagrange dual function provides a lower bound on the optimal
value of (24), i.e.,

Z∗
P ≥ g(λ, ν)

Remark. The dual function is always (since it is affine function of (λ∗, ν∗) )
concave even when the primal problem is not convex.
Definition (Lagrange Dual problem).

Z∗
D =maximize

λ,ν
g(λ, ν) (26a)

subject to λ ≽ 0 (26b)

Remark. (Weak Duality) Z∗
P ≥ Z∗

D. The difference Z∗
P − Z∗

D is called duality
gap (Useful from algorithmic perspective.)
Remark. (Strong Duality) Z∗

P = Z∗
D For convex problems it usually (not

always) holds. There are some constraint qualifications under which strong
duality holds. One such constraint qualification is Slater’s condition.
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Complementary slackness

Suppose x∗ and (λ∗, ν∗) are optimal primal and dual values respectively.
Further suppose that strong duality holds, i.e., Z∗

P = Z∗
D.

f0(x) = g(λ∗, ν∗)

= inf
x

{
f0(x) +

m∑
i=1

λ∗
i fi(x) +

p∑
k=1

ν∗khk(x)

}

≤ f0(x
∗) +

m∑
i=1

λ∗
i fi(x

∗) +

p∑
k=1

ν∗khk(x
∗)

≤ f0(x
∗)

Above equation implies
∑m

i=1 λ
∗
i fi(x

∗) = 0. Since each term in this
summation is non positive, we conclude that

λ∗
i fi(x

∗) = 0 , ∀i = 1, · · · ,m

This condition is called complementary slackness. It holds for any primal
and dual optimal values (when strong duality holds). It implies that when
λ∗
i > 0 =⇒ fi(x

∗) = 0 or equivalently, fi(x
∗) < 0 =⇒ λ∗

i = 0. 38



Karush Kuhn Tucker (KKT) conditions

Suppose f0, {fi}mi=1{hk}pk=1 are differentiable functions and x∗ and (λ∗, ν∗)
are pair of primal and dual values with zero duality gap. Then, the problem
must satisfy the following conditions which are famously called KKT
conditions.

1. Primal feasibility

fi(x) ≤ 0,∀i = 1, · · · ,m
hk(x

∗) = 0,∀k = 1, · · · , p

2. Dual feasibility

λ∗
i ≥ 0, ∀i = 1, · · · ,m

3. Complementary slackness

λ∗
i fi(x

∗) = 0, ∀i = 1, · · · ,m

4. Gradient of the Lagrangian must vanish at x∗

∇f0(x
∗) +

m∑
i=1

λ∗
i∇fi(x

∗) +

p∑
k=1

ν∗
k∇hk(x

∗) = 0

Remark. For convex problems with differentiable objective and constraint
functions satisfying Slater’s condition, KKT conditions are both necessary and
sufficient conditions.
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Thank you!
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