
Link-based algorithms for solving UE

Pramesh Kumar

IIT Delhi

September 15, 2025

Algorithms for solving the traffic assignment

▶ Under a few assumptions, we formulated the UE traffic assignment
problem as a convex optimization problem.

▶ Although one can use general-purpose algorithms designed to solve
convex optimization problems for the UE traffic assignment problem,
we need to consider the following issues:

– The problem size is large for realistic networks.
– The computational time should be reasonable.

▶ After several decades of research, there are many efficient algorithms
developed for solving UE traffic assignment problem. Each algorithm
has its own merits and demerits.

2

Types of algorithms

1. Link-based algorithms

– keeps track of link flows only
– requires less computer memory
– easy to implement
– slow convergence especially when high accuracy is required

2. Path-based algorithms

– keeps track of path flows
– requires high computer memory
– requires more programming skills than link-based methods
– faster convergence especially when high accuracy is required

3. Bush-based algorithms

– keeps track of bush (acyclic subgraphs) flows
– requires higher computer memory than link-based algorithms but

lesser memory than path-based algorithms
– requires sophisticated programming skills
– faster convergence as compared to both link-based and path-based

algorithms

3

General structure of traffic assignment algorithms

Start

Find shortest path between each O-D pair

Shift some travelers to shortest paths and update travel times

Check if UE has reached?

Stop

Yes

No

4

Convergence criteria

▶ Relative gap The gap becomes zero if and only if the flow values x
satisfy UE

gap =
TSTT− SPTT

SPTT
=

∑
(i,j)∈A xijtij(xij)−

∑
(r,s)∈Z2 drskrs∑

(r,s)∈Z2 drskrs

(1)

▶ Objective function gap Let f(x) be the Beckmann’s objective
function.

gap =
f̄ − f

f
(2)

where, f̄ and f are the upper and lower bound respectively.
▶ Average excess cost

AEC =

∑
(i,j)∈A xijtij(xij)−

∑
(r,s)∈Z2 drskrs∑

(r,s)∈Z2 drs
(3)

▶ Maximum excess cost

MEC = max
(r,s)∈Z2

{
max

π∈Πrs:hπ>0
{cπ − krs}

}
(4) 5

Frank-Wolfe method

In order to find the search direction, Frank-Wolfe method (also known as
conditional gradient method) solves the following linear program in
iteration k:

min
y∈X

∇f(xk)T (y − xk) (5)

where X is the feasible region.
If we use the Beckmann’s formulation of UE, (5) turns into |Z2| mincost
flow problems in the network G(N,A) with link costs {tij(xk

ij)}(i,j)∈A.
These problems can be solved by finding the shortest path between each
O-D pair (r, s) ∈ Z2 and loading the demand drs on it. The
corresponding link flow values {ykij}(i,j)∈A is referred to as auxiliary flows
or all or nothing assignment since all the travelers are assigned to
shortest paths. This is the direction in which the travelers feel pressure to
move. However, if we move all the travelers to these paths, they will no
longer remain shortest paths. Therefore, we shift only a fraction λ of
travelers, i.e.,

xk+1 = (1− λ)xk + λyk (6)

The new flows xk+1 will remain feasible since X is a convex set. 6

Frank-Wolfe method

∇f
(
xk
)

yk ∈ argmin
{
∇f

(
xk
)T

y
}

λxk + (1− λ)yk

xk

7

Frank-Wolfe method

Note that (yk − xk) is a descent direction. Why? For Beckmann’s
function ∇f(x)T (y − x) = t(x)T (y − x) ≤ 0.
We can use the exact line search to compute λ, i.e.,

λ ∈ argminλ∈[0,1]{f((1− λ)xk + λyk)} (7)

This can be treated unconstrained minimization problem of one variable,
which can solved using df

dλ = 0 =⇒ .∑
(i,j)∈A

tij((1− λ)xij + λyij)(yij − xij) = 0 (8)

If required, the final value of λ can be projected back to region [0, 1]. Let
us summarize the F-W algorithm now.

8

Frank-Wolfe algorithm
1: procedure FW(G, t,d, tol)
2: k = 1, xk

ij = 0, tkij = tij(0), ∀(i, j), and gap =∞ ▷ Initialization
3: while gap > tol do
4: yk

ij = 0, ∀(i, j) ∈ A ▷ Auxiliary flows
5: for r ∈ Z do
6: l∗, pred← Dijkstra(G, tk, r)
7: for s ∈ Z do
8: π∗

rs ← TracePreds(G, pred, s)
9: for (i, j) ∈ π∗

rs do
10: yk

ij ← yk
ij + drs

11: end for
12: end for
13: Evaluate λ using (8)
14: for (i, j) ∈ A do
15: xk+1

ij ← (1− λ)xk
ij + λyk

ij ▷ Update link flows

16: tk+1
ij ← tij(x

k+1
ij) ▷ Update link travel times

17: end for
18: Evaluate gap
19: k ← k + 1
20: end for
21: end while
22: end procedure

9

Method of successive averages (MSA)

▶ In each iteration k, the method uses step size λ = 1
k+1 .

▶ This means it shifts more travelers to shortest paths in initial
iterations but fewer travelers as the algorithm progresses until
convergence.

▶ It is easy to implement method.

10

Frank-Wolfe’s “zig-zagging” behavior

FW searches for the target vector y by solving LP (5). Since the optimal
solution to an LP is an extreme point, the target vector is restricted to be one
of those extreme points. This results in a trajectory of points shown by thin line
in the following figure.The algorithm is not able to take a direct step shown by
thick line. This causes slow performance of the algorithm when it reaches near
to the equilibrium solution, behavior popularly known as zigzagging behavior.

Figure: Credits: BLU book Chapter 7, Fig. 7.4 11

Conjugate Frank-Wolfe method

▶ Conjugate Frank-Wolfe finds the target vector in more intelligent
way than F-W method.

▶ It chooses the target vector y so that the current search direction
(y − x) is conjugate to the previous iteration search direction
(yprev − x).

(yprev − x)TH(y − x) = 0 (9)

and y remains feasible which could be achieved as below (since X is
a convex set).

y = λyprev + (1− λ)yAON (10)

where, H = diag(
dtij(xij)

xij
) is the Hessian of the Beckmann’s

function evaluated at the current solution x, and yAON refers to the
all or nothing assignment vector.

▶ By plugging y from (10) into (9), we get the following value of λ

λ =
(yprev − x)TH(yAON − x)

(yprev − x)TH(yAON − yprev)
(11)

12

Conjugate Frank-Wolfe method

In summation, we get,

λ = proj[0,1−ϵ]

(∑
(i,j)∈A((yprev)ij − xij)(y

AON
ij − xij)t

′

ij∑
(i,j)∈A((yprev)ij − xij)(yAON

ij − (yprev)ij)t
′
ij

)
(12)

where, t
′

ij is the travel time derivative evaluated at xij .
Remark.

▶ If the denominator of (12) is zero, then we can set λ = 0 forcing the
target vector to be all or nothing assignment y = yAON.

▶ For the first iteration, we do not have any yprev in which case, we
also select λ = 0.

▶ We also don’t λ to take the value 1, otherwise the new target vector
y will be same as the previous yprev making the algorithm stuck in
an infinite loop. In this case, we can take λ = 1− ϵ, where ϵ is small
positive number.

13

Suggested reading

▶ BLU Book Chapter 7 Section 1 and 2

▶ Sheffi Chapter 5

▶ Mitradjieva, Maria, and Per Olov Lindberg. ”The stiff is
moving—Conjugate direction Frank-Wolfe methods with applications
to traffic assignment.” Transportation Science 47.2 (2013): 280-293.

14

Thank you!

15

