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Introduction

Definition (Network). A network is interconnection among set of items.
Examples include internet network, social network, airline networks,
highway networks, etc.
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Transportation networks

Figure: Credits: BLU BookIntroduction 4
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Undirected graph

Definition (Undirected graph/network). An undirected graph G is a pair
(N,A), where N is the set of nodes and A is the set of links whose
elements are unordered pair of distinct nodes.

Example(s). N = {1, 2, 3, 4, 5},
A = {(1, 2), (1, 3), (1, 5), (5, 4), (5, 3), (5, 2), (2, 4), (3, 4)}
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Remark. Let |N | = n. Then, |E| = m ≤ n(n−1)
2 .
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Directed graph

Definition (Directed network/graph). A directed graph is pair (N,A),
where N denotes the set of nodes/vertices and A ⊆ N ×N denotes the
set of links/edges/arcs whose elements are ordered pair of distinct nodes.

Example(s). N = {1, 2, 3, 4, 5, 6, 7}
A = {(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (3, 6), (4, 5), (4, 6), (5, 7), (6, 5), (6, 7)}
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Definition (). If e = (i, j) ∈ A, then
1. i and j are endpoints of e.
2. i is the tail node and j is the head node of e.
3. (i, j) emanates from i and terminates at node j.
4. (i, j) is incident to nodes i and j.
5. (i, j) is outgoing link of node i and incoming link of node j.Definitions 7



Definition (Degree). The number of incoming and outgoing links of a
node i ∈ N are called indegree and outdegree respectively. The sum of
indegree and outegree is called degree.

Definition (Multilinks). Two or more links with same head and tail nodes.

Definition (Loop). A link whose tail and head nodes are the same.

Note: In this course, we assume that graphs contain no loops or
multiarcs.

Definition (Subgraph). A graph G
′
(N

′
, A

′
) is a subgraph of G(N,A) if

N
′ ⊆ N and A

′ ⊆ A. A subgraph G
′
(N

′
, A

′
) of G(N,A) is said to be

induced by N
′
if A

′
contains links with their end points in N

′
.

Definition (Walk). A collection of links W = {(u1, v1), · · · , (uq, vq)} is
an s− t walk if

1. u1 = s

2. vi = ui+1,∀i = 1, ..., q − 1

3. vq = t
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Example(s).
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W1 = {(1, 2), (2, 5), (5, 7)},
W2 = {(1, 2), (2, 3), (3, 4), (4, 2), (2, 5), (5, 7)},
W3 = {(1, 3), (3, 6), (6, 5), (5, 4), (4, 6), (6, 7)}
are all exmples of 1− 7 walks.

Definition (Path). An s− t path is an s− t walk without any repeated
nodes.
In above example, W1 is a 1− 7 path while W2 and W3 are not.

Definition (Cycle). A cycle is a path with same first and last nodes.

Definition (Tour). A tour is a cycle including all nodes of the graph.

Definition (Acyclic graph). A graph without any cycles is acyclic.
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Definition ().

1. Nodes i ∈ N and j ∈ N are said to be connected if there exists at
least one path between i and j.

2. A graph is said to be connected graph if every pair of its nodes are
connected. Otherwise, the graph is called disconnected.
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Definition (Tree). A tree is a connected graph that contains no cycles.

Proposition

1. A tree on n nodes contains exactly n− 1 links.

2. A tree has at least 2 leaf nodes (i.e., nodes with degree 1).

3. Every pair of nodes are connected by a unique path.

Proof.
1. (Proof by induction) Let P (n) be the statement that a tree on n nodes contains

exactly n− 1 links. P (1) = 0 since there is only one node and a link requires at
least two nodes. Let us assume that P (k) is true, i.e., a tree on k nodes contains
exactly k − 1 links. Then, we can add another node to this graph with one link
and that would still be a tree with k links, which means that P (k + 1) is true.

2. Assuming n < ∞, we prove this by contradiction. Assume that a tree on n
nodes has only one leaf u. Then, find the longest path from u in the tree. The
longest path cannot end at u because that is not a path but cycle. Let us
assume that it ends at v. If v has degree 1 then we are done. If it has degree 2,
then it is not a longest path.

3. Proof by induction. Not possible to add another node without creating a cycle.
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Network representation

▶ The performance of a network algorithm depends not only on the
algorithm but also on which data structure we use to store the
network.

▶ We need to store how nodes are connected as well as capacities or
costs associated to links.

Data structures

1. Node-link incidence matrix

2. Node-node adjacency matrix

3. Adjacency list

4. Forward (Backward) Star
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Highway networks

A few notations:
▶ A highway network is represented by a directed graph G(N,A)

– Nodes: intersections or locations where road characteristics change
(intersections, freeway merges/diverges)

– Links: roadways connecting nodes
– Commodities: travelers (cars, motorcycles, etc.)

▶ Z ⊆ N is the set of zones (this actually represents the centroid of
traffic analysis zone where we’ll assume any trip starts or ends)

▶ D = {drs}(r,s)∈Z2 : A matrix having between different
origin-destination pairs

▶ xij : flow or volume on link (i, j) ∈ A during the analysis time
period

▶ tij : travel time on link (i, j) ∈ A, usually function of xij

▶ Πrs: set of paths between origin-destination pair (r, s) ∈ Z2

▶ hπ: flow or volume on path π ∈ Π
▶ cπ: travel time on path π ∈ Π
▶ δπij = 1, if (i, j) ∈ π, 0, otherwise (Link-path incidence matrix)
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Example

Write down N,A, d,Π. Assume that demand is equally distributed
among paths, compute the value of x, c.
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Bureau of Public Roads (BPR) Function

A common link performance (or volume-delay) function

tij(xij) = t0ij

{
1 + α

(
xij

uij

)β
}

where, t0ij , uij , α, β represent the free flow travel time on the link, ca-
pacity of the link and parameters respectively.
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Thank you!
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