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Notations

▶ A highway network is represented by a directed graph G(N,A),
where N is the set of nodes and A is the set of links.

▶ Z ⊆ N is the set of zones (this actually represents the centroid of
traffic analysis zone where we’ll assume any trip starts or ends)

▶ D = {drs}(r,s)∈Z2 : A matrix having between different
origin-destination pairs

▶ xij : flow or volume on link (i, j) ∈ A during the analysis time
period

▶ xrs
ij : flow or volume on link (i, j) ∈ A traveling between (r, s) ∈ Z2

▶ tij : travel time on link (i, j) ∈ A, usually function of xij

▶ Πrs: set of paths between origin-destination pair (r, s) ∈ Z2

▶ Π = ∪(r,s)∈Z2Πrs: set of all paths in the network
▶ hπ: flow or volume on path π ∈ Π
▶ cπ: travel time on path π ∈ Π
▶ δπij = 1, if (i, j) ∈ π, 0, otherwise
▶ ∆ = {δπij}(i,j)∈A,π∈Π: link-path incidence matrix
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Feasible assignment

In terms of paths flows, an assignment {hπ}π∈Π is defined as the feasible
assignment if it satisfies the following constraints:

hπ ≥ 0,∀π ∈ Π (non-negative path flows) (1)∑
π∈Πrs

hπ = drs,∀rs ∈ Z2 (conservation of flow) (2)

Let’s denote H =
{
h ∈ R|Π|

∣∣∣ (1)− (2)
}
as the set of feasible path flows.

In terms of link flows, an assignment {xij}(i,j)∈A is defined as the
feasible assignment if it satisfies the following constraints:

xrs
ij ≥ 0,∀(i, j) ∈ A (non-negative link flows) (3)

∑
j∈FS(i)

xrs
ij −

∑
j∈BS(i)

xrs
ji =


drs, if i = r

−drs, if i = s

0, otherwise

,∀i ∈ N, ∀(r, s) ∈ Z2 (4)

xij =
∑

(r,s)∈Z2

xrs
ij ,∀(i, j) ∈ A (conservation of flow) (5)
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Feasible assignment

We can also aggregate these with respect to destinations/origins only.
Let {xs

ij} be the flow on link (i, j) ∈ A going to destination s ∈ Z.

xs
ij ≥ 0,∀(i, j) ∈ A,∀s ∈ Z (non-negative link flows) (6)

∑
j∈FS(i)

xs
ij −

∑
j∈BS(i)

xs
ji =


drs, if i = r

−
∑
r∈Z

drs, if i = s

0, otherwise

,∀i ∈ N, ∀(r, s) ∈ Z2 (7)

xij =
∑
s∈Z

xs
ij ,∀(i, j) ∈ A (conservation of flow) (8)

Let’s denote X =
{
x ∈ R|A|

∣∣∣ (3)− (5)
}
as the set of feasible link flows.
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Link-path relations

The link flows can be obtained from path flows using the following
relation:

xij =
∑

(r,s)∈Z2

∑
π∈Πrs

δπijh
π (9)

In vector-matrix notations,
x = ∆h (10)

Similarly, the path travel times can be obtained from link travel times
using the following relation

cπ =
∑

(i,j)∈A

δπijtij (11)

In vector-matrix notations,
c = ∆T t (12)
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Flow Decomposition Theorem

Theorem (AMO Chapter 3 , Th. 3.5)
Every path and cycle flow has a unique representation as non-negative
link flows. Conversely, every non-negative link flows x can be represented
as a path and cycle flow (though not necessarily uniquely).
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Proposition
H is compact (closed & bounded) and convex.

Proof.
▶ Closed : Consider a sequence {h1,h2, · · · } such that hk ∈ H,∀k. As

k 7→ ∞, hk converges to h ∈ H.

▶ Bounded : Since we have hπ ≤ max(r,s)∈Z2 drs,∀π ∈ Π, we have

∥h∥ ≤
√
|Π|(max(r,s)∈Z2 drs).

▶ Convex : Consider h1,h2 ∈ H. For any λ ∈ [0, 1],
λh1 + (1− λ)h2 ≥ 0 since h1,h2 ≥ 0. Also,∑

π∈Πrs(λhπ
1 + (1− λ)hπ

2 ) = λdrs + (1− λ)drs = drs,∀rs ∈ Z2.
Therefore, λh1 + (1− λ)h2 ∈ H.

Proposition
X is compact (closed & bounded) and convex.

Proof.
Since every feasible assignment x ∈ X is obtained by linear
transformation of some h ∈ H.
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Iterative process1

▶ We can use path flows to evaluate link flows

▶ We can use link flows to evaluate link travel times

▶ We can use link travel times to evaluate the path travel times.

▶ But we are still looking for a principle to use path travel times to
evaluate path flows. Such principle is called assignment principle.
One example of assignment principal is UE principle.

Path flows h Link flows x

Link travel times tPath travel times c

x = ∆h

c = ∆T t

Assignment rule
Link performance
function

1BLU book Chapter 5
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Mathematical modeling of UE
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Assumptions

1. Network is strongly connected, i.e., there exists at least one path
between each origin destination pair.

2. Link travel time function is positive and continuous function of its
flow.
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Example

Consider the following example:

UE is h∗ =

[
0
30

]
and c(h∗) =

[
100
50

]
Con-

sider the following cases:

▶ Consider h =

[
30
0

]
(h− h∗)T c(h∗) =([

30
0

]
−

[
0
30

])T [
100
50

]
= 1500

θ = cos−1
(

1500√
1800×

√
12500

)
= 71.57◦

▶ Consider h =

[
15
15

]
(h− h∗)T c(h∗) =([

15
15

]
−

[
0
30

])T [
100
50

]
= 750

θ = cos−1
(

750√
450×

√
12500

)
= 71.57◦

t1(x1) = 100

t2(x2) = 20 + h2

r s30 30
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UE as a variational inequality problem

The user equilibrium path flow vector h∗ ∈ H is a solution to the
following variational inequality problem VI(H, c).

c(h∗)T (h− h∗) ≥ 0,∀h ∈ H (13)

Remark. This can be interpreted as follows. c(h∗)Th ≥ c(h∗)Th∗, i.e.,
any deviation from UE path flows while keeping the UE path travel times
fixed cannot reduce TSTT.
Remark. Note that
(∆T t(x∗))T (h− h∗) = t(x∗)T (∆h−∆h∗) = t(x∗)T (x− x∗). The VI
can be cast in terms of link flows, i.e.,

t(x∗)T (x− x∗) ≥ 0,∀x ∈ X (14)
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UE as a variational inequality problem

Theorem (BLU Theorem 6.1)
A path flow vector h∗ ∈ H is a solution to VI(H, c) (13) if and only if it
satisfies the UE principle.

Proof.
This can be proved using the following contrapositive argument:
A path flow vector h∗ is not a solution to VI(H, c) (13) if and only if it
does not satisfy the UE principle. .
=⇒ Let us assume that h∗ is not a solution to VI(H, c) which means,
∃h̃ ∈ H such that c(h∗)T (h̃− h∗) > 0 =⇒ c(h∗)T h̃ > c(h∗)Th∗

which shows that h̃ is not UE since travelers can shift their paths to
further reduce the overall system travel time.
⇐= Let us assume that h∗ is not UE flow vector, which means there
exists a path π̃ ∈ Πrs for some (r, s) ∈ Z2 such that hπ̃ > 0 even though
cπ̃(h∗) > minπ∈Πrs cπ(h∗). Let π

′ ∈ argminπ∈Πrscπ(h∗). Now shift

some flow 0 < ϵ < hπ̃ from path π̃ to path π
′
creating a new flow vector

h
′
which is a feasible flow vector. We observe that

c(h∗)T (h
′ − h∗) = ϵ(cπ

′

(h∗)− cπ̃(h∗)) < 0, which shows that h∗ is not
a solution to VI(H, c) . 13



UE as a fixed point problem

Let h∗ be the equilibrium flow vector. Then,

h∗ = projH(h− c(h∗)) (15)

In terms of link flows,

t∗ = projX(x− t(x∗)) (16)

Theorem
If assumptions on slide 10 holds, then there exists at least one UE
solution.

Proof.
Use Brouwer’s fixed point theorem taught in the previous lecture. The
existence of solution can also be proved using Weierstrass’ Theorem
(refer to lecture on Mathematical Preliminaries) for the Beckmann’s
formulation presented on slide 19.
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UE as a fixed point problem

Another way to pose UE as a fixed point problem is composite mapping.
The UE assignment rule is a function AUE that returns the equilibrium
path flows h∗ given the equilibrium path travel times c which is a
continuous function of equilibrium path flows h∗ . The overall problem
can be written as:

h∗ ∈ AUE(c(h∗)) (17)

Remark.

1. c(h) = ∆T t(∆h)

2. AUE(c) = {h ∈ H | hπ > 0 ⇐⇒ cπ = minπ′∈Πrs{cπ
′

},∀π ∈
Πrs,∀(r, s) ∈ Z2} Notice that f(h) = AUE(c(h∗)) is a set-valued
map from H to 2H . To make it clear, check the following example:

AUE(c1, c2) =


{[30, 0]} c1 < c2

{[0, 30]} c1 > c2

{[h, 30− h] | h ∈ [0, 30]} c1 > c2

t1(x1) = 50

t2(x2) = 45 + x2

r s
30

30
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Theorem
Under assumptions on slide 10, there is at least one solution to the fixed point
problem h∗ ∈ AUE(c(h∗)).

Proof.
We use Kakutani’s fixed point theorem to prove this.

▶ H is non-empty, closed, bounded, and convex (already proved).

▶ AUE(c(h)) is non-empty since given h ∈ H there will be at least one path
with minimum travel time.

▶ AUE(c(h)) is convex. Take any feasible path flow vectors h1,h2 ∈ H.
The convex combination h = λ ∗ h1 + (1− λ)h2 ∈ H since H is a convex
set. For feasible h ∈ H, the mapping AUE(c(h)) will select the shortest
travel time paths for assigning flow.

▶ AUE(c(h)) has a closed graph property. We need to show that a sequence
{(hk, ĥk)}k, where ĥk ∈ AUE(c(hk)) , will converge to (h, ĥ), where
ĥ ∈ AUE(c(h)). Note that c(h) is a continuous function in h if link travel
time functions are continuous. Let’s assume that {(hk, ĥk)}k converges
to (h, h̃), where h̃ /∈ AUE(c(h)). This means

∃π ∈ Πrs for some (r, s) ∈ Z2 such that cπ(h) > minπ
′∈Πrs{cπ

′
(h)}+ ϵ

for some ϵ > 0. But since c(hk) converges to c(h), there exists a large

enough K such for k ≥ K, cπ(hk) > minπ
′∈Πrs{cπ

′
(hk)}+ ϵ

2
. This

means for k ≥ K, ĥπ
k = 0 but then ĥk /∈ AUE(c(hk)), a contradiction.
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UE as a nonlinear complementarity problem

Let krs be the cost of the path with shortest travel time between O-D
pair (r, s) ∈ Z2. Further let k = {krs}π∈Πrs,(r,s)∈Z2 UE can be
formulated as NCP as below:

(c(h∗)− k)Th∗ = 0 (18)

(c(h∗)− k) ≥ 0 (19)

h ∈ H (20)
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UE as a convex optimization problem

We studied that for a convex optimization problem minx{f(x)
∣∣ x ∈ X} with

differentiable f , x∗ ∈ X is optimal if and only if

∇f(x∗)T (x− x∗) ≥ 0, ∀x ∈ X (21)

We also stated that UE link flow vector x∗ ∈ X is a solution to the following
VI(X, t):

t(x∗)T (x− x∗) ≥ 0, ∀x ∈ X (22)

Comparing (21) and (22), we see that

tij(xij) =
∂F (xij)

∂xij
=⇒ F (xij) =

∫ xij

0

tij(x)dx

F (xij) is also known as Beckmann’s function. Therefore, UE can be
formulated as a following optimization problem:

ZUE =minimize
x

∑
(i,j)∈A

∫ xij

0

tij(x)dx (23a)

subject to x ∈ X (23b) 18



Beckmann’s formulation of UE

ZUE =minimize
x,h

∑
(i,j)∈A

∫ xij

0

tij(x)dx (24a)

subject to
∑

π∈Πrs

hπ = drs,∀(r, s) ∈ Z2 (24b)

hπ ≥ 0,∀π ∈ Π (24c)

xij =
∑
π∈Π

δπijh
π,∀(i, j) ∈ A (24d)

Remark. Beckmann’s function does not have any physical, behavioral, or
economic interpretation.
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Beckmann’s formulation in terms of link flows

ZUE =min
x

∑
(i,j)∈A

∫ xij

0

tij(x)dx (25a)

s.t. xrs
ij ≥ 0, ∀(i, j) ∈ A (25b)

∑
j∈FS(i)

xrs
ij −

∑
j∈BS(i)

xrs
ji =


drs, if i = r

−drs, if i = s

0, otherwise

, ∀i ∈ N,∀(r, s) ∈ Z2

(25c)

xij =
∑

(r,s)∈Z2

xrs
ij , ∀(i, j) ∈ A (25d)
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Beckmann’s formulation in terms of path flows

ZUE =minimize
h

∑
(i,j)∈A

∫ ∑
π∈Π δπijh

π

0

tij(x)dx (26a)

subject to
∑

π∈Πrs

hπ = drs,∀(r, s) ∈ Z2 (26b)

hπ ≥ 0,∀π ∈ Π (26c)
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Theorem
The optimality conditions of Beckmann’s optimization problem (26)
corresponds to UE conditions .

Proof.
Let us associate dual variables {krs}(r,s)∈Z2 and {λπ}π∈Π to constraints
(26b) and (26c) respectively. The Lagrangian function can be written as:

L(h,k, λ)

=
∑

(i,j)∈A

∫ ∑
π∈Π δπijh

π

0

tij(x)dx+
∑

(r,s)∈Z2

krs(drs −
∑

π∈Πrs

hπ)−
∑
π

λπhπ

The KKT conditions of (26) are given below:

1. Primal conditions ∑
π∈Πrs

hπ = drs,∀(r, s) ∈ Z2 (27)

−hπ ≤ 0,∀π ∈ Π (28)
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Proof (contd.)

2. Dual conditions

λπ ≥ 0, ∀π ∈ Π (29)

3. Complementary slackness

λπhπ = 0,∀π ∈ Π (30)

4. Gradient of Lagrangian vanishes at h∑
(i,j)∈A

δπijtij(xij)− krs − λπ = 0 (31)

(31) implies that λπ = cπ − krs, ∀π ∈ Π. Further, using (30), we have

hπ(cπ − krs) = 0,∀π ∈ Π

We observe that

1. If hπ > 0 =⇒ cπ = krs

2. If cπ > krs =⇒ hπ = 0

This is exactly UE. Note that krs is the cost of shortest path between
(r, s) ∈ Z2,
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You might have to use the following rule for taking the derivative in (31).

Leibnitz’s Rule

d

dx

(∫ b(x)

a(x)
f(x, t)dt

)
= f(x, b(x)) ·

d

dx
b(x)− f(x, a(x)) ·

d

dx
a(x) +

(∫ b(x)

a(x)

∂

∂x
f(x, t)dt

)
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Uniqueness of UE

Assumption: Network is strongly connected and link travel time function
is a non-negative, continuous, and strictly increasing function of its flow,
i.e.,
▶ tij(xij) ≥ 0,∀(i, j)
▶ ∂tij(xij)

∂xpq
= 0,∀(i, j) ̸= (p, q)

▶ ∂tij(xij)
∂xij

> 0,∀(i, j)

Theorem
Under above assumptions, Beckmann’s formulation will produce unique
link flows.

Proof.
Since tij(xij) is a strictly increasing function of xij ,

∫ xij

0
tij(x)dx is a

strict convex function (result proved in Mathematical preliminaries
lecture).The objective function sum of strictly convex functions, therefore
it is strictly convex. Further, the feasible region of the optimization
problem is also convex set. Therefore, (25) produces a unique minimizer.
This result can also be proved through VI.
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Uniqueness of UE

Although Beckmann’s formulation will produce unique solution in the link
flow space but it may not produce unique solution in the path flow space.
This is because the Beckmann’s function in terms of path flows may not
be strictly convex. Multiple path flows can be produced for a given link
flow solution.
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Uniqueness of UE

For example2, if x13 = 2, x23 = 3, xupper
34 = 3, xlower

34 = 2, x45 = 5, we can have the
following path flows.

1. hπ1 = 0, hπ2 = 2, hπ3 = 3, hπ4 = 0

2. hπ1 = 2, hπ2 = 0, hπ3 = 1, hπ4 = 2

In fact, there are infinite combination of path flow vectors for the given link flow
values.
hπ1 = 2α, hπ2 = 2(1− α), hπ3 = 3− 2α, hπ4 = 2α,∀α ∈ [0, 1]

1

2
3 4 5

2

3

3

2

3

3

2

5

1

3 4 5

1

3 4 5

2
3 4 5

2
3 4 5

π1

π2

π3

π4

2Example taken from Sheffi Chapter 3
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System optimal traffic assignment

In SO assignment, we minimize TSTT.

ZSO =minimize
h,x

∑
(i,j)∈A

xijtij(xij) (32a)

subject to
∑

π∈Πrs

hπ = drs, ∀(r, s) ∈ Z2 (32b)

hπ ≥ 0, ∀π ∈ Π (32c)

xij =
∑
π∈Π

δπijh
π,∀(i, j) ∈ A (32d)

Proposition
Beckmann’s formulation of UE (24) will produce the SO assignment flows if
link travel time functions are replaced by marginal travel time functions

t̃ij(x) = tij(x) + xij
dtij(x)

dx
in the objective function (24a), where xij

dtij(x)

dx
is

the externality caused by additional traveler.

Proof.
Since

∑
(i,j)∈A

∫ xij

0
t̃ij(x) =

∑
(i,j)∈A xijtij(xij)

Remark. This means by imposing the toll equal to xSO dtij(x
SO)

dx
on each link,

one can achieve system optimal traffic state. 28



Suggested reading

▶ Sheffi Chapter 3

▶ Patriksson Chapter 2 and 3

▶ BLU book Chapter 6

▶ Dafermos, Stella. ”Traffic equilibrium and variational inequalities.”
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