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Notations

A highway network is represented by a directed graph G(N, A),
where N is the set of nodes and A is the set of links.

7 C N is the set of zones (this actually represents the centroid of
traffic analysis zone where we'll assume any trip starts or ends)

D = {d"*}(,; s)ez>: A matrix having between different
origin-destination pairs

x;; : flow or volume on link (7, j) € A during the analysis time
period

;s : flow or volume on link (i, j) € A traveling between (r,s) € Z*
t;;: travel time on link (7, 7) € A, usually function of z;;

I17%: set of paths between origin-destination pair (7, s) € Z°

IT = U )ez211"%: set of all paths in the network

h™: flow or volume on path 7 € II

c™: travel time on path 7 € Il

6% =1, if (i,5) € m,0, otherwise

A = {0 }(ijyeanen: link-path incidence matrix



Feasible assignment
In terms of paths flows, an assignment {/" } <11 is defined as the feasible
assignment if it satisfies the following constraints:
h™ >0,¥r €11 (non-negative path flows) (1)
Z h™ =d"* Vrs € Z? (conservation of flow) (2)

wellrs
Let's denote [ = {h € R‘H" (1) — (2)} as the set of feasible path flows.

In terms of link flows, an assignment {;; }(; j)c 4 is defined as the
feasible assignment if it satisfies the following constraints:

;>0 (non-negative link flows) (3)
ifi=r
> ap - —d” ifi=s ,Vie N,Y(r,s)cZ?> (4)
jEFS(i) 7635( ) otherwise
S ( (conservation of flow) (5)

(r, 5)622 3



Feasible assighment

We can also aggregate these with respect to destinations/origins only.
Let {;} be the flow on link (i, j) € A going to destination s € Z.

zj; > 0,V(i,j) € A,Vs € Z (non-negative link flows) (6)

drs, if i =r
Sooan - > 76Zd“ ifi=s vieNV(rs)eZ> (7)
JEFSGE) JEBS() 0, otherwise
= Z x;, V(i j) € A (conservation of flow) (8)
s€Z

Let’s denote X = {X € RW‘ (3)— (5)} as the set of feasible link flows.



Link-path relations

The link flows can be obtained from path flows using the following
relation:
zp= Y. Y OTh" (9)
(r,s)€Z? mell™s

In vector-matrix notations,
x = Ah (10)

Similarly, the path travel times can be obtained from link travel times
using the following relation

"= Z (ﬁrjtij (11)
(i,7)€A

In vector-matrix notations,
c=ATt (12)



Flow Decomposition Theorem

Theorem (AMO Chapter 3, Th. 3.5)

Every path and cycle flow has a unique representation as non-negative
link flows. Conversely, every non-negative link flows x can be represented
as a path and cycle flow (though not necessarily uniquely).



Proposition
H is compact (closed & bounded) and convex.

Proof.

» Closed: Consider a sequence {h' h? --.1 such that h* ¢ [, Vk. As
k + oo, hy converges to h € H.

» Bounded: Since we have i < max, ,ez2 d"*, Y7 € 11, we have
[|h]| < /[H|(max(, g)cz2 d").

» Convex: Consider hy,h, € H. For any A € [0, 1],
Ahy + (1 — A)hy > 0 since hy, hy > 0. Also,
S e (ART + (1 = \)hE) = Ad™ + (1 — \)d™ = d"*, Vrs € 22,
Therefore, A\hy + (1 — A)hy € H.

O

Proposition
X is compact (closed & bounded) and convex.
Proof.

Since every feasible assignment x € X is obtained by linear
transformation of some h € H. Il



Iterative process’

» We can use path flows to evaluate link flows
» We can use link flows to evaluate link travel times
» We can use link travel times to evaluate the path travel times.

» But we are still looking for a principle to use path travel times to
evaluate path flows. Such principle is called assignment principle.
One example of assignment principal is UE principle.

= Ah
Path flows h = Link flows x
A
I Link performance
Assignment rule: function
| :
c = ATt

Path travel times c Link travel times t

IBLU book Chapter 5
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Assumptions

1. Network is strongly connected, i.e., there exists at least one path
between each origin destination pair.
2. Link travel time function is positive and continuous function of its

flow.
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Example

Consider the following example:

.o« |0 « _ |100 = 100
UEish™ = [30} and c(h™) = [50} Con-
sider the following cases: 3 30
. 30
> Consider h = {O} ta(z2) = 20 + ho

(h—h*)"c(h*) =

(] o))" 2] -

-1 1500
= COS =
4 co V1800 x+1/12500 7

=
Ut
3

o

. 15
> =
Consider h {15}

(h—b*)Te(h") =
T
15 0 100
(3] - [so]) [50] =7
0 = cos t (m> =171.57° 0 10 206~ 30~ 40 50




UE as a variational inequality problem

The user equilibrium path flow vector h* € H is a solution to the
following variational inequality problem VI(H,c).

c(h*)’(h—h*) >0,vh € H (13)

Remark. This can be interpreted as follows. ¢(h*)"h > c(h*)"h*, i.e.,
any deviation from UE path flows while keeping the UE path travel times
fixed cannot reduce TSTT.

Remark. Note that

(ATt(x*))T(h — h*) = t(x*)T(Ah — Ah*) = t(x*)7(x — x*). The VI
can be cast in terms of link flows, i.e.,

t(x*)7(x — x*) > 0,¥x € X (14)




UE as a variational inequality problem

Theorem (BLU Theorem 6.1)

A path flow vector h* € H s a solution to VI(H,c) (13) if and only if it
satisfies the UE principle.

Proof.

This can be proved using the following contrapositive argument:

A path flow vector h* is not a solution to VI(H,c) (13) if and only if it
does not satisfy the UE principle. .

== Let us assume that h" is not a solution to VI(/7,c) which means,
Jh € H such that ¢(h*)"(h—h*) >0 = c(h*)"h > c(h*)"h*
which shows that h is not UE since travelers can shift their paths to
further reduce the overall system travel time.

<— Let us assume that h* is not UE flow vector, which means there
exists a path 7 € I1"* for some (7, 5) € Z* such that 1™ > 0 even though
¢ (h*) > mingerr ¢™(h*). Let 7 € argmin_crp--¢™ (h*). Now shift
some flow 0 < ¢ < 1™ from path 7 to path 7 creating a new flow vector
h' which is a feasible flow vector. We observe that

c(h*)T(h' —h*) = ¢(¢™ (h*) — ¢"(h*)) < 0, which shows that h* is not
a solution to VI(H,c) . 013



UE as a fixed point problem

Let h* be the equilibrium flow vector. Then,

(1" = projys(h — c(h)) | (15)

In terms of link flows,

[ = projx (x — t(x"))] (16)

Theorem
If assumptions on slide 10 holds, then there exists at least one UE
solution.

Proof.

Use Brouwer's fixed point theorem taught in the previous lecture. The
existence of solution can also be proved using Weierstrass' Theorem
(refer to lecture on Mathematical Preliminaries) for the Beckmann's
formulation presented on slide 19. O
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UE as a fixed point problem

Another way to pose UE as a fixed point problem is composite mapping.
The UE assignment rule is a function AYF that returns the equilibrium
path flows h* given the equilibrium path travel times ¢ which is a
continuous function of equilibrium path flows h* . The overall problem
can be written as:

h* € AYE(c(h*)) (17)

Remark.
1. c(h) = ATt(Ah)
2. A%%(c)={h e H|h™ >0 < ™ =minyp..{c" },Vr €
11", V/(r,s) € Z?} Notice that f(h) = AYE(c(h*)) is a set-valued
map from H to 27. To make it clear, check the following example:

{[30,0]} c1 < c2
AYE(cq,e0) = ¢ {[0,30]} c1 > e

{[h,30 —h] | h €[0,30]} c1>c2

ta(ze) = 45 + x2
15



Theorem

Under assumptions on slide 10, there is at least one solution to the fixed point
problem h* € AY%(c(h")).

Proof.

We use Kakutani's fixed point theorem to prove this.

>
>

>

H is non-empty, closed, bounded, and convex (already proved).

AYE(c(h)) is non-empty since given h € H there will be at least one path
with minimum travel time.

AYE(c(h)) is convex. Take any feasible path flow vectors h' , h* € H.
The convex combination h = A * h' + (1 — \)h? € H since H is a convex
set. For feasible h ¢ I, the mapping A"F(c(h)) will select the shortest
travel time paths for assigning flow.

AUE(cgh)) has a closed graph property. We need to show that a sequence
{A(hk, hy)}i, where hy, € AUE(c(hk,)) , will converge to (h, h), where

h € AY®(c(h)). Note that c(h) is a continuous function in h if link travel
time functions are continuous. Let's assume that {(hy, hy)}, converges
to (h, h), where h ¢ AY®(c(h)). This means

I € II™* for some (r, s) € Z* such that ¢"(h) > min_s _;,..{c¢" (h)} +¢
for some ¢ > 0. But since c(hy) converges to c(h), there exists a large
enough K such for £ > K, ¢"(hy) > min s .. {c" (hg)} + 5. This

T

means for k& > K, hf = 0 but then hy ¢ A"%(c(hy)), a contradiction.
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UE as a nonlinear complementarity problem

Let £"° be the cost of the path with shortest travel time between O-D
pair (r,s) € Z*. Further let k = {k"*} ciire ;. 5)c 22 UE can be
formulated as NCP as below:

(c(h*) —k)"h* =0 (18)
(c(h®) —k) >0 (19)
heH (20)

17



UE as a convex optimization problem

We studied that for a convex optimization problem min.{ f(x) { x € X} with
differentiable f, x* € X is optimal if and only if

VixHT(x—x")>0,vyxe X (21)
We also stated that UE link flow vector x* € X is a solution to the following
VI(X,t):
t(x) (x—x*) > 0,¥x € X (22)

Comparing (21) and (22), we see that

OF (x4 v
tij(xij) = % = | Fziy) = /O tij(z)de
1] B

F(x;;) is also known as Beckmann's function. Therefore, UE can be
formulated as a following optimization problem:

ZYF —minimize E /"w tij(z)dx (23a)
* (i,j)ea”0

subject to xe X (23b) 18



Beckmann’s formulation of UE

ZUE —minimize
x,h

subject to

(i,j)ea”0
> nT=d(rs) € Z°
mellrs
h™ > 0,Vr eIl
Tij = Z 5” h™, c A
well

(24a)

(24b)

(24c¢)
(24d)

Remark. Beckmann's function does not have any physical, behavioral, or

economic interpretation.

19



Beckmann’s formulation in terms of link flows

=min
xX

s.t.

Tij
/ ti]' (ZC)d.’E
(i,j)€a”0

278 > 0,%(i,5) € A
e,
x5 — xj; =< —d"™,
JEFS(i) JEBS(3) 0,

Tij = Z xi;,V(i,5) € A

(r,s)€Z2

(25a)

(25b)
ifi=r
ifi=s ,Yie N,¥(r,s)

otherwise
(25¢)

(25d)

e z?

20



Beckmann’s formulation in terms of path flows

Zﬂ' Hézh
2VF —mminimize 3 / T de (26a)
(i,j)eA”0
subject to > BT =d"Y(rs) € Z? (26b)
mellrs
h™>0,Vrell (26¢)

21



Theorem
The optimality conditions of Beckmann's optimization problem (26)
corresponds to UE conditions .

Proof.
Let us associate dual variables {£"}(, ;)cz> and {\" } <11 to constraints
(26b) and (26¢) respectively. The Lagrangian function can be written as:

L(h,k, )\
Zw?]ld:\")}
=y / ' pyde+ Y KdT = Y R =D AR
(i,j)€A” 0 (r,s)€Z? mellrs ™

The KKT conditions of (26) are given below:
1. Primal conditions

z A =d" Y(r,s) € Z? (27)
mEllrs

—h" <0,Vrell (28)

L



Proof (contd.)

2. Dual conditions

|

>

" >0,Vrell (29)
3. Complementary slackness

ATRT =0,V e 11 (30)
4. Gradient of Lagrangian vanishes at h

> Shti(wiy) =k = AT =0 (31)

(i,7)€A

(31) implies that \™ = ¢™ — k"*,Vrr € II. Further, using (30), we have

‘ R™(c" — k™) =0,Vr € H‘

We observe that
1L.IfAT >0 = " =k"°
2. fc" >k = h" =0

This is exactly UE. Note that £" is the cost of shortest path between
(r,s) € Z°, O



You might have to use the following rule for taking the derivative in (31).

Leibnitz's Rule

@ Ja(z) dx

b(x)
N ( / f«m)dt) = Fb(a) - bla) — f(wa(@) - (@) + (/ (et

24



Uniqueness of UE

Assumption: Network is strongly connected and link travel time function
is a non-negative, continuous, and strictly increasing function of its flow,
i.e.,

> L (zi5) > 0,V(i,7)

> 2alri) — 0 v(i, §) # (p,q)

0z g

Otij(xij L.
> ) 0,9, 5)

Theorem
Under above assumptions, Beckmann’s formulation will produce unique
link flows.

Proof.

Since ;(x;) is a strictly increasing function of x;;, [, ¢;;(x)dx is a
strict convex function (result proved in Mathematical preliminaries
lecture).The objective function sum of strictly convex functions, therefore
it is strictly convex. Further, the feasible region of the optimization
problem is also convex set. Therefore, (25) produces a unique minimizer.
This result can also be proved through VI. O

25



Uniqueness of UE

Although Beckmann's formulation will produce unique solution in the link
flow space but it may not produce unique solution in the path flow space.
This is because the Beckmann's function in terms of path flows may not

be strictly convex. Multiple path flows can be produced for a given link
flow solution.

26



Uniqueness of UE

For example?, if w13 = 2, w03 = 3, 2377 = 3,290 = 2,245 = 5, we can have the
following path flows.

1. h™ =0,h™ =2,h™ =3,h™ =0

2. h™ =2,h™2 =0,h™ =1,h™ =2
In fact, there are infinite combination of path flow vectors for the given link flow

values.
h™ =2a,h™ =2(1 — «a),h™ =3 — 2a,h™ = 2a,Va € [0,1]

D
© O m

3 © O e

2Example taken from Sheffi Chapter 3
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System optimal traffic assignment

In SO assignment, we minimize TSTT.

SO .. .
Z =minimize Z xijtij(zij) (32a)
(i.j)eA
subject to > hT=d"V(r,s) € Z* (32b)
Tell™s
h" > 0,¥r €1 (32¢)
Ty =y 65TV €A (32d)
mell
Proposition

Beckmann's formulation of UE (24) will produce the SO assignment flows if

link travel time functions are replaced by marginal travel time functions
Lij(2) = tij(x) + @i ”GC( ) in the objective function (24a), where z;; dt’d’;ﬂ is

the externality caused by additional traveler.

Proof.
Since Z(z‘,.j)eA fg” ti; (L) = Z(i,j)EA Tijtij ((L'ri,j) O
SO dt;;(259)

Remark. This means by imposing the toll equal to « on each link,

one can achieve system optimal traffic state. 28



Suggested reading

> Sheffi Chapter 3
» Patriksson Chapter 2 and 3
» BLU book Chapter 6

» Dafermos, Stella. " Traffic equilibrium and variational inequalities.”
Transportation science 14.1 (1980): 42-54.
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Beckmann, McGuire, and Winsten (1955)

U.S. AIR FORCE

PROJECT RAND

RESEARCH MEMORANDUM

STUDIES IN THE ECONOMICS OF TRANSPORTATION *

Martin Beckmann
C. B. McGuire
Christopher B. Winsten

RM-1488

12 Mey 1955

K- 1600
5-12-55
9-

will give us & proof that thers exfet sclutions to cur system. Crasiler

the function

3

T £3
(3.13) n(.....zul_‘,...).fk £

15
1
JLxrax - 3L [n (x) ex.
1,605 27 o )

B3
3

(Bconomists ere varned thet thie is not to te interpreted se coneumers'
surplus: The term on the richt hus &s its kerel the gverage, rather taan

the increpental cost to users e:lisctivel;.) Here the factor 3 ccaes in

‘because we vich t- sun cver every rcud but once. while exch rued is denoted
by two pairs of indices, 1j and Ji. Differentiste vith respect to

X, after substituting for x,  asd Xg, from (3.4) end (3.2). Tae

15,k
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Smith (1979)

THE EXISTENCE, UNIQUENESS AND STABILITY
OF TRAFFIC EQUILIBRIA

M. J. SMITH
Department of Mathematics, University of York, Heslington, York YOI 5DD, England

(Received 22 May 1978; in revised form | February 1979)

Let H satisfy the condition (8) for a Wardrop equilibrium, and let C(H) be the route-costs

determined by H. Regard these route-costs as fixed. Because H satisfies (8) and so only cheapest|

routes are used, total cost cannot be reduced by any change or changes of route (route-costs,

remember, are fixed). Therefore any other route-flow F in A has total cost at least as great as|

the route-flow H which uses only cheapest routes; it then follows from (4), the definition of total
cost, that .

CH)-F=CH)-HforallFE A 9

Conversely, suppose that (8) is not satisfied. Then there is (x,y) € N X N and routes R,
R, € %(x, y) such that

H,>0 and C,(H)> C.(H).

Moving the flow H, along R, to the cheaper route R, will reduce total cost by C.(H)H, -
C,(H)H, > 0. Thus, if the resulting route-flow is F,

C(H)-F<CH)-H and F € A.

In which case (9) is not satisfied.

We have shown here that if (8) is satisfied then (9) is satisfied. We have also shown that if (8)
is not satisfied then (9) is not satisfied. Hence (8) and (9) are equivalent.

It is clear that (9) is in turn equivalent to each of the two following conditions:

[-CH)]-(F-H)<0 foral F€A. (10)
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