
Graph search algorithms

Pramesh Kumar

IIT Delhi

February 15, 2024

Outline

Search algorithms

BFS

DFS

Topological ordering

Search algorithms 2

Search algorithms

They attempt to find all the nodes with a desired property.

Example(s).

1. Finding all nodes in the network reachable using a directed path
from a given node.

2. Finding all nodes in the network that can reach a given node along a
directed path.

3. Identify all connected components of a network.

4. Determining whether a given network is bipartite.

5. Identify a directed cycle in the network, otherwise if the network is
acyclic, determine the topological order of nodes
(order(i) < order(j),∀(i, j) ∈ A) .

Search algorithms 3

Search algorithm

1: Input: Graph G(N,A) and source node s ∈ N
2: procedure Search(G, s)
3: mark(i)← FALSE,∀i ∈ N\{s};mark(s)← TRUE

4: pred(i)← NA,∀i ∈ N\{s}; pred(s)← 0
5: order(i)← NA,∀i ∈ N\{s}; order(s)← 0
6: Q← {s}
7: while Q ̸= ϕ do
8: Remove ”next” node i from Q
9: for j ∈ δ(i) do

10: if mark(j) == FALSE then
11: mark(j)← TRUE

12: pred(j)← i
13: order(j)← order(i) + 1
14: Q← Q ∪ {j}
15: end if
16: end for
17: end while
18: end procedure

Search algorithms 4

Search algorithm

▶ Above algorithm marks all the nodes which are reachable from s
along a directed path

▶ The directed path can be obtained by tracing the predecessors pred

▶ When the algorithm terminates pred helps in obtaining the search
tree.

▶ order helps keep the sequence in which we mark nodes.

Proposition
The search algorithm runs in O(|N |+ |A|) time.

Proof.
Lines 3-5 in O(|N |) time. Adding (Line 14) and removing (Line 8) can be performed
in O(1) time. Because the procedure scans the adjacency list of each node only when
it is removed from Q, it scans each adjacency list at most once. Since the sum of the
lengths of all |N | adjacency lists is Θ(|A|), the total running time of scanning
adjacency lists is O(|N |+ |A|). Thus, the total running time of the search algorithm is
O(|N |+ |A|).

Search algorithms 5

Outline

Search algorithms

BFS

DFS

Topological ordering

BFS 6

Breadth-first search

▶ If we maintain Q as a queue in the search algorithm, we remove the
nodes from the front and add them to the rear.

▶ This way the algorithm selects nodes in First-In-First-Out (FIFO)
order.

Definition (Shortest path). Define d(s, j) be the shortest path distance
from s to j as the minimum number of links in any path from s to j. If
there does not exists any path, then d(s, j) =∞. We call the path of
length d(s, j) as the shortest path from s to j.

Theorem
In the breadth-first search tree, the path from s to any node i is a
shortest path.

BFS 7

Outline

Search algorithms

BFS

DFS

Topological ordering

DFS 8

Depth-first search

▶ If we maintain Q as a stack in the search algorithm, we remove the
nodes from the front and add them to the front.

▶ This way the algorithm selects nodes in Last-In-First-Out (LIFO)
order.

▶ It searches ”deeper” in the graph whenever possible.

▶ Unlike breadth-first search, its predecessor graph might contain
several trees.

DFS 9

Task

Apply BFS and DFS to the following network.

1

2

3

4

5

6

7

DFS 10

Outline

Search algorithms

BFS

DFS

Topological ordering

Topological ordering 11

Directed acyclic graphs and topological ordering

Definition (Directed acyclic graph (DAG)). A directed graph is DAG if
does not contain any directed cycle.

Definition (Topological ordering). We say that a labeling order of a
graph is topological ordering if ∀(i, j) ∈ A, we have order(i) < order(j).
A network containing directed cycle cannot be topologically ordered.

Conversely, a directed acyclic graph can be topologically ordered.

Topological ordering 12

1: Input: Graph G(N,A)
2: Output: Topological ordering order of N
3: procedure TopologicalOrdering(G)
4: inDegree(i)← 0, ∀i ∈ N
5: order(i)← NA, ∀i ∈ N
6: count← 1
7: for (i, j)← A do
8: inDegree(j)← inDegree(j) + 1
9: end for

10: Q← {n ∈ N : inDegree(n) = 0}
11: while Q ̸= ϕ do
12: Remove ”next” node i from Q
13: order(j)← count
14: count = count+ 1
15: for j ∈ FS(i) do
16: inDegree[j]← inDegree[j]− 1
17: if inDegree[j] == 0 then
18: Q← Q ∪ {j}
19: end if
20: end for
21: end while
22: if count < |N | then
23: G has cycle(s)
24: else
25: G is acyclic and return order
26: end if
27: return order
28: end procedure

Topological ordering 13

Connectivity in directed graphs

Definition (Strongly connected graphs). A graph is strongly connected if
for every pair of nodes i, j ∈ N , there exists a directed path from i to j.
This means that for an arbitrary node i ∈ N , every other node in G is
reachable from i and every other node can reach i along a directed path.

We can determine the strong connectivity using two applications of the
search algorithm–forward and backward search algorithms.

Topological ordering 14

Thank you!

Topological ordering 15

	Search algorithms
	BFS
	DFS
	Topological ordering

