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Motivation

Consider the following example

Z =minimize
x1,x2,x3

x1 + 2x2 + x3 (1a)

subject to 3x2 + x3 ≥ 1 (1b)

x1 + 2x2 − 3x3 ≥ 2 (1c)

x1 − x2 ≥ 1 (1d)

x3 ≥ 3 (1e)

▶ Multiplying (1b), (1c), (1d), and (1e) by 1, 0, 1, and 0 respectively
and adding, we have

x1 + 3x2 − x2 + x3 ≥ 1 + 1

=⇒ Z∗ = x1 + 2x2 + x3 ≥ 2

▶ Similarly, multiplying (1b), (1c), (1d), and (1e) by 0, 1, 0, and 4
respectively and adding, we have

Z∗ = x1 + 2x2 + x3 ≥ 14
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Motivation

▶ By multiplying constraints with suitable multipliers and adding, we
can obtain a lower bound on the objective value.

▶ Two important questions arise here:

– Which multipliers should we multiply the constraints with?
– How close is the best lower bound to the optimal value?

Procedure

1. Multiply each inequality i by µi. Choose the sign of each µi so that
the inequality sign remains ≥.

2. Add all the inequalities. If the resultant matches the objective
function, then the r.h.s. of the resultant provides the lower bound
on Z∗.

Definition (Dual problem). The dual of a minimization problem is the
problem of finding best multipliers for its constraints so that their
resultant matches the objective function with maximum r.h.s.

The dual is an optimization problem!!.
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For previous problem, we multiply (1b), (1c), (1d), and (1e) by
µ1, µ2, µ3, and µ4 respectively, we obtain

(µ2+µ3)x1+(3µ1+2µ2−µ3)x2+(µ1−3µ2+µ4) ≥ µ1+2µ2+µ3+3µ4

▶ We don’t want to change the ≥ sign, so we keep µ1, µ2, µ3, µ4 ≥ 0.
▶ We want l.h.s. to match the objective function, i.e.,

µ2 + µ3 = 1 (2)

3µ1 + 2µ2 − µ3 = 2 (3)

µ1 − 3µ2 + µ4 = 1 (4)

▶ Finally, we want to r.h.s to be as maximum as possible. Therefore,
the problem becomes

Z =maximize
µ1,µ2,µ3,µ4

µ1 + 2µ2 + µ3 + 3µ4 (5a)

subject to µ2 + µ3 = 1 (5b)

3µ1 + 2µ2 − µ3 = 2 (5c)

µ1 − 3µ2 + µ4 = 1 (5d)

µ1, µ2, µ3, µ4 ≥ 0 (5e)

▶ Notice
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A linear optimization problem (primal)

Z =minimize
x

n∑
j=1

cjxj (6a)

subject to
n∑

j=1

aijxj ≥ bi, ∀i = 1, · · · ,m (6b)

xj ≥ 0, ∀j = 1, · · · ,m. (6c)

has the associated dual linear program given by

Z =maximize
µ

m∑
i=1

biµi (7a)

subject to
m∑
i=1

aijµi ≤ cj ,∀j = 1, · · · , n (7b)

µi ≥ 0, ∀i = 1, · · · ,m. (7c)

▶ Each primal constraint correspond to a dual variable.
▶ Each primal variable correspond to a dual constraint.
▶ Dual of a minimization problem is the maximization problem and vice-versa.

▶ Equality constraint correspond to free dual variable variable.
▶ Dual of the dual is primal.
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Weak Duality Theorem
Theorem
If (x1, ..., xn) is feasible for the primal and (µ1, ..., µm) is feasible for the
dual, then

n∑
j=1

cjxj ≥
m∑
i=1

biµi

Proof.
If (µ1, ..., µm) is feasible for the dual, then

∑m
i=1 aijµj ≤ cj , ∀j = 1, · · · , n.

∴
∑n

j=1 cjxj ≥
∑n

j=1

(∑m
i=1 aijµi

)
xj =

∑m
i=1

(∑n
j=1 aijxj

)
µi ≥

∑m
i=1 biµi.

The last inequality follows from the fact that (x1, ..., xn) is feasible to the primal.

Corollary
If primal problem is unbounded then the dual problem is infeasible.

Proof.
Assume that the dual LP is feasible and let (µ̂1, ..., µ̂m) be a feasible solution to dual problem.
Then, by previous theorem, we have

∑n
j=1 cjxj ≥

∑m
i=1 biµ̂i, ∀x feasible to the primal

problem. Then, ∃{xi}∞
i=1 such that limi7→∞ cTxi = −∞ ≥ bTµ, a contradiction.

Corollary
If dual problem is unbounded then the primal problem is infeasible.

Remark. It is possible for both primal and dual to be infeasible.
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Strong Duality Theorem

Theorem
If the primal problem has an optimal solution x∗ = (x∗

1, ..., x
∗
n), then its

dual also has an optimal solution µ∗ = (µ∗
1, ..., µ

∗
m) such that

n∑
j=1

cjx
∗
j =

m∑
i=1

biµ
∗
i (8)

Proof.
We prove this using the simplex method. Assume that the primal problem is in the
standard form. If the primal problem has an optimal solution x∗, then it is associated
with some optimal basis B such that xB = A−1

B b (x = (xB ,xN )). We also know
that when the simplex method terminates, the reduced costs are all non-negative

cT − cTBA−1
B A ≥ 0 (9)

Define µT = cTBA−1
B . Using (9), ATµ ≤ c, which means that µ is feasible to the dual

problem. Moreover, µTb = cTBA−1
B b = cTBxB = cTx∗. Using the weak duality

theorem, µ must be optimal to the dual problem.

Remark. The proof shows that the dual solution comes as a by-product
of the primal simplex method.Duality theorems 10



Summary

Relationships
Dual

Optimal Unbounded Infeasible

Primal
Optimal
Unbounded
Infeasible
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Complementarity conditionsTheorem
Suppose that x∗ = (x∗

1, ..., x
∗
n) and µ = (µ∗

1, ..., µ
∗
m) are primal and dual

optimal solutions respectively. Let e∗i be the excess variables for
constraints

∑n
j=1 aijx

∗
j ≥ bi,∀i = 1, ...,m and s∗j be the slack variables

for
∑m

i=1 aijµ
∗
i ≤ cj ,∀j = 1, ..., n. Then, e∗i · µ∗

i = 0,∀i = 1, ...,m and
s∗j · x∗

j = 0,∀j = 1, ..., n.

Proof.
Given primal and dual solutions x∗ and y∗, we have,

n∑
j=1

cjx
∗
j =

n∑
j=1

(
m∑

i=1

aijµi + sj

)
x
∗
j (10)

=
m∑

i=1

 n∑
j=1

aijx
∗
j

µ
∗
i +

n∑
j=1

sjx
∗
j (11)

=
m∑

i=1

(
b
∗
i + e

∗
i

)
µ
∗
i +

n∑
j=1

sjx
∗
j (12)

=

m∑
i=1

b
∗
i µ

∗
i +

m∑
i=1

e
∗
i µ

∗
i +

n∑
j=1

sjx
∗
j (13)

From strong duality theorem, we know that
∑n

j=1 cjx
∗
j =

∑m
i=1 b∗i µ

∗
i . Therefore,∑m

i=1 e∗i µ
∗
i +

∑n
j=1 sjx

∗
j = 0. The theorem follows.Duality theorems 12



Example

Example(s). Verify the Complementarity conditions:
P Optimal solution (1, 0, 1)

Z =minimize
x

13x1 + 10x2 + 6x3 (14)

subject to 5x1 + x2 + 3x3 = 8 (15)

3x1 + x2 = 3 (16)

x1, x2, x3 ≥ 0 (17)

D Optimal solution (2, 1)

Z =maximize
y

8y1 + 3y2 (18)

subject to 5y1 + 3y2 ≤ 13 (19)

y1 + y2 ≤ 10 (20)

3y1 ≤ 6 (21)
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Alternative systems

Given the system Ax = b,x ≥ 0

▶ Can we say that the system has a solution? One can find a solution
(also known as certificate).

▶ To disprove the existence of a solution, do we have a certificate?
Yes!

– We can find a vector µ such that µTA ≥ 0 and µTb < 0.
– Such a system is called alternative system.
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Farkas Lemma

Theorem (Farkas Lemma)
Given A ∈ Rm×n. Then, exactly one of the following two systems has a
solution:

1. Ax = b,x ≥ 0 for x ∈ Rn

2. µTA ≥ 0 and µTb < 0 for µ ∈ Rm

Proof.
Using F-M elimination or separation theorem

There are many alternative theorems. One example is below:

▶ If the system ATµ ≤ c has no solution, then we can find a vector x
such that Ax = 0,x ≥ 0, cTx < 0.
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LP duality general form

P

Z =minimize
x

cT1 x1 + cT2 x2 + cT3 x3

subject to A11x1 +A12x2 +A13x3≤b1

A21x1 +A22x2 +A23x3≥b2

A31x1 +A32x2 +A33x3=b3

x1 ≥ 0,x2 ≤ 0,x3free

D

Z =maximize
µ

bT
1 µ1 + bT

2 µ2 + bT
3 µ3

subject to AT
11µ1 +AT

21µ2 +AT
31µ3≤c1

AT
12µ1 +AT

22µ2 +AT
32µ3≥c2

AT
13µ1 +AT

23µ2 +AT
33µ3=c3

µ1 ≤ 0, µ2 ≥ 0, µ3free

Remark. Memorization technique: Normal, Weird, Bizarre
Alternative systems 17
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Solving LP equivalent to finding a feasible solution

Solving
Z =minimize

x
cTx

subject to Ax ≥ b

x ≥ 0

(22)

is equivalent to finding a feasible solution to the the following system (⋆)

1. (Primal feasibility) Ax ≥ b,x ≥ 0

2. (Dual feasibility) ATµ ≤ cT , µ ≥ 0

3. (Strong duality) cTx ≤ µTb

▶ If (x̂, µ̂) is feasible to above system (⋆), then x is optimal to (22).

▶ If the system (⋆) is infeasible, then (22) can be infeasible or
unbounded.

– If Ax ≥ b,x ≥ 0 is feasible, then (22) is unbounded.

Solving LP equivalent to finding a feasible solution 19
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Connection to finite two person zero-sum game

Matrix game
▶ 2 players

▶ Each player selects, independently of other, an action out of finite set of possible
actions.

▶ Both reveal to each other their actions simultaneously

▶ Let i and j be the actions taken by player 1 and 2 resp.

▶ Then, player 1 has to pay aij rupees to player 2.

▶ The payoff matrix A = [aij ]i=1,...,m and j=1,...,n is known beforehand. Of
course aij can be positive or negative.

▶ A randomized strategy means that players choose their actions at random
according to a known probability distribution.

▶ Let µi be the probability with which player 1 plays action i = 1, ...,m and let xj

be the probability with which player 2 plays action j = 1, ..., n.

▶ µi ≥ 0, i = 1, ...,m,
∑m

i=1 µi = 1 and xj ≥ 0, j = 1, ..., n,
∑n

j=1 xj = 1

▶ Expected payoff to player 1 is
∑

i,j µiaijxj = µTAx

▶ Assume players are rational and want to maximize their expected payoff.

▶ Player possible strategies and payoffs are common knowledge.
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Example

Rock-Paper-Scissors

▶ 2 players

▶ Players simultaneously choose an action ∈ {R,P, S}.
▶ If both players choose the same action, then the game is drawn

aij = 0,∀i = j.

▶ Rock beats scissors, scissors beat paper, and paper beats rock.

▶ Payoff matrix A =

 0 1 −1
−1 0 1
1 −1 0


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Optimal strategies

Given x, player 1 solves the following LP:

Z(x) =minimize
µ

µTAx (23)

subject to eTµ = 1 (24)

µ ≥ 0 (25)

(26)

Then, player 2 tries to maximizes her payoff

max
x

min
µ

µTAx

such that eTµ = 1, µ ≥ 0 and eTx = 1,x ≥ 0.

Theorem (Minimax theorem)
There exist stochastic vectors µ and x for which

max
x

µ∗TAx = min
µ

µTAx∗
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Suggested Reading

▶ VR Chapter 5

24



Origins of LP Duality

Figure: (From left to right) John von Neumann, George B. Dantzig, David
Gale, Harold W. Kuhn and Albert W. Tucker (Pictures source: Wiki)
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Thank you!
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