
Analysis of algorithms and computational complexity

Pramesh Kumar

IIT Delhi

January 4, 2024

Outline

Definitions

Why algorithms matter?

Complexity analysis

Order of growth/Asymptotic efficiency

Polynomial- versus exponential-time algorithms

Definitions 2

Definition (Problem). A problem P is a question to be answered for a
given input.

Example(s).

1. The sorting problem is, given a sequence of n natural numbers
⟨a1, ..., an⟩, to find a permutation (reordering) ⟨a′

1, ..., a
′

n⟩ of input
sequence such that a

′

1 ≤ a
′

2 ≤ ... ≤ a
′

n.

2. The s− t shortest path problem is, given a directed graph G(N,A),
link costs c : A 7→ R, a source s ∈ N and a destination t ∈ N , to
find a path from source s to destination t with minimum cost.

Definition (Instance). An instance of the problem is the problem specified
with specific input data.

Example(s). sort(⟨54, 78, 21, 87, 5⟩) is an instance of the sorting problem.

Definition (Algorithm). An algorithm is a step-by-step procedure that
takes an input and produces an output.

Remark. An algorithm is said to be correct, if for every instance, it
produces the correct output.

Definition (Data structure). A way to store and organize data in order to
facilitate access and modifications.

Definitions 3

Outline

Definitions

Why algorithms matter?

Complexity analysis

Order of growth/Asymptotic efficiency

Polynomial- versus exponential-time algorithms

Why algorithms matter? 4

Why algorithms matter?

Computer A Computer B
-Fast -Slow
-Executes 10 billion -Executes 10 million

instructions per sec instruction per sec
-Implement insertion sort -Implement merge sort
-Complexity = 2n2 -Complexity = 50nlogn

-Time = 2×(107)2

1010 ≈ 5.5 hrs -Time = 50×107log107

107 ≈ 20 min.

Table: Source: CLRS

Why algorithms matter? 5

Insertion sort algorithm

Algorithm 1 An algorithm to sort a sequence of n numbers

1: Input: An array A of n elements ⟨a1, ..., an⟩
2: Output: A permutation (reordering) ⟨a′

1, ..., a
′
n⟩ such that a

′
1 ≤ a

′
2 ≤ ... ≤ a

′
n.

3: procedure Insertion Sort(A)
4: for j = 2 to len(A) do
5: key = A[j]
6: i = j − 1 ▷ Insert A[.] into the sorted sequence A[1, ..., j − 1]

7: while i > 0 & A[i] > key do
8: A[i+ 1] = A[i]
9: i = i− 1

10: end while
11: A[i+ 1] = key
12: end for
13: end procedure

Source: CLRSProposition
Insertion sort algorithm is correct. 6

Outline

Definitions

Why algorithms matter?

Complexity analysis

Order of growth/Asymptotic efficiency

Polynomial- versus exponential-time algorithms

Complexity analysis 7

Analyzing algorithms (Complexity analysis)

▶ Provides a framework for analyzing the performance of an algorithm
in terms of elementary operations (assignment, arithmetic, logical
and control) it performs.

▶ One measure of efficiency of an algorithm is running time.

– Wall clock time can be ”problematic” since it may depend the
programming language, hardware, proficiency of the programmer,
compiler, etc.

▶ The running time for solving a problem may vary by the instance,
algorithm, and hardware used.

▶ Three approaches for measuring the performance of an algorithm

1. Empirical analysis: Estimates how the algorithm performs in real-life
on specific instances.

2. Average-case analysis: Estimates the expected running time of the
algorithm based on sampling from a probability distribution on the
problem instances.

3. Worst-case analysis: Provides an upper bound on the number of
steps the algorithm can take on any instance.

Complexity analysis 8

Analyzing algorithms

▶ Worst-case analysis has became quite popular in the theoretical
sense as it does not depend on the programming language, compiler,
probability distribution on the problem instances, etc.

▶ However, it is influenced by pathological instances. For example, the
performance of simplex method versus ellipsoid method for solving
linear programs.

Example(s). Assume that worst-case time-complexity (we’ll define it
formally shortly) of solving the shortest path problem with non-negative
length costs is 2n2, meaning that number of computations grows no
more than 2 times the square of number of nodes in the graph.

Remark. We say that an algorithm is good if its computations are
bounded by a polynomial in the problem input size. On the other hand,
we say that an algorithm is bad if its computations grow exponentially
when applied to specific instances.

Remark. An algorithm typically takes varying amount of time/space on
different instances.

Complexity analysis 9

Analyzing algorithms

Definition (Time complexity/running time).: A time complexity function
for an algorithm is a function describing the time taken by the algorithm
in terms of its input size.

Definition (Space complexity). A space complexity function for an
algorithm is a function describing the memory required by the algorithm
in terms of its input size.

Complexity analysis 10

Analyzing insertion sort algorithm
▶ T (n): running time of the algorithm for input array of size n.
▶ tj : # of times the ”while” loop is executed.
▶ Assume constant time is needed for executing each line of our

pseudo-code.
1: procedure Insertion Sort(A) ▷ Cost Times
2: for j = 2 to len(A) do ▷ c1 n
3: key = A[j] ▷ c2 n− 1
4: i = j − 1 ▷ c3 n− 1
5: while i > 0 & A[i] > key do ▷ c4

∑n
j=2 tj

6: A[i+ 1] = A[i] ▷ c5
∑n

j=2(tj − 1)

7: i = i− 1 ▷ c6
∑n

j=2(tj − 1)
8: end while
9: A[i+ 1] = key ▷ c7 n− 1

10: end for
11: end procedure

Source: CLRS
▶ ”for” loop will come back to check n+ 1, therefore runs n times
▶ T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4(

∑n
j=2 tj) + c5(

∑n
j=2(tj −

1)) + c6(
∑n

j=2(tj − 1)) + c7(n− 1) 11

Analyzing insertion sort

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4(
∑n

j=2 tj) + c5(
∑n

j=2(tj − 1)) +

c6(
∑n

j=2(tj − 1)) + c7(n− 1)

1. Best-case scenario: The array is already sorted, i.e., A[i] < key
always, implying that tj = 1 for j = 2, ..., n.

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4(n− 1) + c7(n− 1)

= (c1 + c2 + c3 + c4 + c7)n− (c2 + c3 + c4 + c7)

T (n) is a linear function of n.

1. Worst-case scenario: The array is reverse-sorted (Note:∑n
j=2 j =

n(n+1)
2 − 1 and

∑n
j=2(j − 1) = n(n−1)

2).

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4

(
n(n+ 1)

2
− 1

)
+ c5

(
n(n− 1)

2

)
+ c6

(
n(n− 1)

2

)
+ c7(n− 1)

T (n) is a quadratic function of n. Worst-case scenario gives you an
upper bound on the running time for any input. 12

Outline

Definitions

Why algorithms matter?

Complexity analysis

Order of growth/Asymptotic efficiency

Polynomial- versus exponential-time algorithms

Order of growth/Asymptotic efficiency 13

Order of growth/Asymptotic efficiency

Definition (Asymptotic notations).: Let g : N 7→ R+. We define

O(g(n)) = {f(n) | ∃c ∈ R+, n0 ∈ N s.t. 0 ≤ f(n) ≤ cg(n),∀n ≥ n0}

Ω(g(n)) = {f(n) | ∃c ∈ R+, n0 ∈ N s.t. 0 ≤ cg(n) ≤ f(n),∀n ≥ n0}
Θ(g(n)) = {f(n) | ∃c1, c2 ∈ R+, n0 ∈ N s.t. 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n),∀n ≥ n0} .

Remark. We write f(n) = O(g(n)) rather than f(n) ∈ O(g(n)).

Remark. An algorithm is efficient if its worst case running time is
polynomial in its input.

Order of growth/Asymptotic efficiency 14

Order of growth/Asymptotic efficiency

O-notation

▶ characterizes an UB on the asymptotic behavior of a function, i.e., a
function grows no faster than the certain rate

▶ f(n) = O(g(n)) pronounced as f(n) is ”big-O” of g(n), which
means that g grows at least as fast as f .

Proposition
4n2 + 100n+ 500 = O(n2)

Proof.
To show this, we need to find c > 0 and n0 ∈ N such that
4n2 + 100n+ 500 ≤ cn2,∀n ≥ n0 =⇒ 4 + 100

n + 500
n2 ≤ c. This is

satisfied for many c and n0. For example, take n0 = 1, c = 604.

Order of growth/Asymptotic efficiency 15

Order of growth/Asymptotic efficiency

Ω-notation

▶ characterizes a LB on the asymptotic behavior of a function, i.e., a
function grows at least as fast as a certain rate, based - as in the
O-notation -on the highest term.

▶ f(n) = Ω(g(n)) pronounced as f is ”Omega” of g, which means
that f grows at least as fast as g.

Proposition
4n2 + 100n+ 500 = Ω(n2)

Proof.
To show this, we need to find c > 0 and n0 ∈ N such that
4n2 + 100n+ 500 ≥ cn2,∀n ≥ n0 =⇒ 4 + 100

n + 500
n2 ≥ c. This holds

for any n0 and c = 4.

Order of growth/Asymptotic efficiency 16

Order of growth/Asymptotic efficiency

Θ-notation

▶ characterizes a ”tight bound” on the asymptotic behavior of a
function, i.e., a function grows ”precisely” at a certain rate,
based-on the highest order term.

Theorem
For any two functions f(n) and g(n), we have f(n) = Θ(g(n)) if and
only if f(n) = O(g(n)) and g(n) = O(f(n)).

Corollary
4n2 + 100n+ 500 = Θ(n2)

Definition (Other asymptotic notations).: Let g : N 7→ R+. We define

o(g(n)) = {f(n) | for any c > 0,∃n0 > 0 s.t. 0 ≤ f(n) < cg(n),∀n ≥ n0}

ω(g(n)) = {f(n) | for any c > 0,∃n0 > 0 s.t. 0 < cg(n) < f(n),∀n ≥ n0}

Order of growth/Asymptotic efficiency 17

Analyzing insertion sort algorithm

1: procedure Insertion Sort(A)
2: for j = 2 to len(A) do
3: key = A[j]
4: i = j − 1
5: while i > 0 & A[i] > key do
6: A[i+ 1] = A[i]
7: i = i− 1
8: end while
9: A[i+ 1] = key

10: end for
11: end procedure

Proposition
The worst-case complexity of insertion sort algorithm is Θ(n2).

Proof.
Let us first show that it is O(n2). The outer ”for” loop runs n− 1 times regardless of
values being sorted. Lines 3-4 run in constant time. The inner ”while” loop might run
j − 1 times. Further, Lines 6-7 take constant time per iteration. Therefore, # of
iterations ≤ (n− 1)(j − 1) ≤ (n− 1)(n− 1) ≤ n2 (since j ≤ n). The running time
for any case of insertion sort algorithm is O(n2).

18

Proof (contd.)
Next, let us show that worst-case complexity of insertion sort algorithm is
Ω(n2). For a value to end-up k positions to the right of where it started, Line
6 must have been executed k times. Let us assume that n is a multiple of 3, so
we divide the array A into three groups of n/3 positions.

A[1 : n
3
] A[n

3
+ 1 : 2n

3
]A[2n

3
+ 1 : n]

Suppose that in the input to the algorithm, the n/3 largest values occupy the
first n/3 positions in the array A[1 : n/3]. Once the array has been sorted,
each of these n/3 values will endup somewhere in the last n/3 positions, i.e.,
A[2n/3 + 1 : n]. For that to happen, each of these n/3 values must pass
through each of the middle n/3 positions, i.e., A[n/3 + 1 : 2n/3]. Each of
these values passes through n/3 position one at a time, by at least n/3
executions of Line 6. Because at least n/3 values have to pass through at least
n/3 positions, the time taken by the insertion sort algorithm in worst-case is at
least proportional to (n/3)(n/3) = n2/9, which is Ω(n2).
Since worst-case complexity of insertion sort algorithm is both O(n2) and
Ω(n2), it is also Θ(n2).

19

Outline

Definitions

Why algorithms matter?

Complexity analysis

Order of growth/Asymptotic efficiency

Polynomial- versus exponential-time algorithms

Polynomial- versus exponential-time algorithms 20

Polynomial- versus exponential-time algorithms

▶ Generally, algorithms with worst-case complexity bounded by a
polynomial function of problem parameters are considered to be
”good”.

▶ Problems for which there is an algorithm with polynomial running
time (or better) are called polynomially solvable.

▶ Let n,m,C, and U represent no. of nodes, no. of links, largest link
cost, and largest link capacity respectively. Examples of
polynomial-time bounds are O(n2), O(nm), O(m+ nlogC),
O(nm+ n2logU), etc.

▶ An algorithm is called exponential-time algorithm if its worst-case
running time grows as a function that cannot be polynomially
bounded by the input length. Examples - O(nC), O(2n), O(n!),
O(nlogn), etc.

▶ Generally, algorithms with exponential worst-case complexity are
considered to be ”bad”.

Polynomial- versus exponential-time algorithms 21

Polynomial- versus exponential-time algorithms

There are many interesting problems for which it is not known if there is
a polynomial-time algorithm. Such problems are considered ”difficult”.
Examples: TSP, VRP, 3-SAT, etc.

One of the open questions in mathematics is whether these ”difficult”
problems really are difficult or if we just haven’t discovered the right
algorithm yet. By answering this question, one can win a million dollars!

https://www.claymath.org/millennium/p-vs-np/(Click for more details).

I’m avoiding providing more information right now for obvious reasons.

Polynomial- versus exponential-time algorithms 22

https://www.claymath.org/millennium/p-vs-np/

Figure: Alan Turing (Source:facts.net)

Alan Turing, considered to be the father of theoretical computer science,
played a key role in formalizing the concepts of algorithm and
computation with the Turing machine, which can be considered a model
of general-purpose computer (Source: Wiki).

23

Suggested reading

1. CLRS Chapter 1 and 2

24

Thank you!

25

	Definitions
	Why algorithms matter?
	
	Complexity analysis
	
	Order of growth/Asymptotic efficiency
	
	Polynomial- versus exponential-time algorithms
	
	

