
Shortest Path

Pramesh Kumar

IIT Delhi

March 18, 2024

Shortest Path

▶ Fundamental problem with numerous applications.

▶ Appears as a subproblem in many network flow algorithms.

▶ Easy to solve.

2

Outline

Introduction

Single-source shortest path

All-pairs shortest path

Introduction 3

Shortest path problem

Definition (Path cost). The cost of a directed path P = (i1, i2, ..., ik) is

the sum of cost of its individual links, i.e., c(P) =
∑k−1

i=1 ci,i+1.

Definition (Shortest Path Problem). Given G(N,A), link costs
c : A 7→ R, and source s ∈ N , the shortest path problem (also known as
single-source shortest path problem) is to determine for every non-source
node i ∈ N\{s} a shortest cost directed path from node s.

OR

Definition (Shortest Path Problem). Given G(N,A), link costs
c : A 7→ R, and source s ∈ N , the shortest path problem is to determine
how to send 1 unit of flow as cheaply as possible from s to each node
i ∈ N\{s} in an uncapacitated network.

Introduction 4

LP formulation

Primal

min
x

∑
(i,j)∈A

cijxij

s.t.
∑

j∈FS(i)

xij −
∑

j∈BS(i)

xji =

{
n − 1 if i = s

−1 ∀i ∈ N\{s}

xij ≥ 0, ∀(i, j) ∈ A

Dual

max
d

(n − 1)ds −
∑

i∈N\{s}

di

s.t. di − dj ≤ cij , ∀(i, j) ∈ A

di free , ∀i ∈ N

Introduction 5

Types of shortest path (SP) problems

1. Single-source shortest path: SP from one node to all other nodes (if
exists)

1.1 with non-negative link costs.
1.2 with arbitrary link costs.

2. Single-pair shortest path SP from between one node and another
node.

3. All-pairs shortest path SP from every node to every node.

4. Various generalizations of shorest path:

– Max capacity path problem
– Max reliability path problem
– SP with turn penalties
– Resource-constraint SP problem
– and many more

Introduction 6

Outline

Introduction

Single-source shortest path

All-pairs shortest path

Single-source shortest path 7

Single-source shortest path

Single-source shortest path 8

Assumptions

1. Network is directed

2. Link costs are integers

3. There exists a directed path from s to every other node (can be
satisfied by creating an artificial link from s to other nodes)

4. The network does not contain a negative cycle.

Remark. For a network containing a negative cycle reachable from s, the
above LP will be unbounded since we can send an infinite amount of flow
along that cycle.

Can SP contain a cycle?

1. It cannot contain negative cycles.

2. It cannot contain positive cycles since removing the cycle produces a
path with lower cost.

3. One can also remove zero weight cycle without affecting the cost of
SP.

Single-source shortest path 9

Shortest path trees

Definition (SP tree). A shortest path tree rooted at s ∈ N is a directed
subgraph G

′
(N

′
, A

′
) where, N

′ ⊆ N and A
′ ⊆ A such that

1. N
′
is the set of nodes reachable from s

2. G
′
forms a tree rooted at s

3. ∀i ∈ N
′
, the unique path from s to i in G

′
is a SP from s to i.

Remark. Shortest path are not unique neither are shortest path trees.

Lemma (Subpaths of shortest path are shortest paths)
Let P = (s = i1, ..., ih = k) be a shortest path from s to k and for
1 ≤ p ≤ q ≤ k, let Ppq = (ip, ..., iq) be a subpath of P from p to q.
Then, Ppq is a shortest path from ip to iq.

Proof.
Decomposing path P into subpaths Psp, Ppq, and Pqk, so that

c(P) = c(Psp) + c(Ppq) + c(Pqk). Assume that P
′
pq be a path such that

c(Ppq) > c(P
′
pq). Then, P

′
= Psp + P

′
pq + Pqk has cost

c(P
′
) = c(Psp) + c(P

′
pq) + c(Pqk) < c(P), which contradicts that P is a

shortest path from s to k.

Single-source shortest path 10

Cost of shortest path

Lemma
Let d(i) be the cost of shortest path from s to node i ∈ N . Then, a
directed path P from s to k is a shortest path if and only if
d(j) = d(i) + cij ,∀(i, j) ∈ P

Proof.
⇐= Let P = (s = i1, ..., ih = k) be a path from s to k such that
d(j) = d(i) + cij , ∀(i, j) ∈ P . Then, cost of the path is

c(P) =
∑

(i,j)∈P

cij = cih−1,ih + ...+ ci1,i2

= (d(ih)− d(ih−1)) + (d(ih−1)− d(ih−2)) + ...+ (d(i2)− d(i1))

= d(ih) = d(k)

Therefore, P (s = i1, ..., ih = k) is the shortest path from s to k.
=⇒ Let P be a shortest path from s to k and d(k) is the cost of shortest
path from s to k. Using previous lemma, since subpaths of shortest paths are
also shortest paths, we have d(j) = d(i) + cij ,∀(i, j) ∈ P .

Single-source shortest path 11

Shortest path in acyclic networks

Remember that we can always order nodes in acyclic networks G(N,A)
such that order(i) < order(j),∀(i, j) ∈ A in O(m+ n) time.

1: Input: Graph G(N,A), costs c, and source s
2: Output: Optimal cost labels d and predecessors pred
3: procedure ShortestPathsDAG(G, c, s)
4: d(i)←∞,∀i ∈ N{s}; d(s)← 0
5: pred(i)← NA,∀i ∈ N\{s}; pred(s)← 0
6: order ← TopologicalOrdering(G)
7: for each node i in order do
8: for j ∈ FS(i) do
9: if d(j) > d(i) + cij then

10: d(j)← d(i) + cij
11: pred(j)← i
12: end if
13: end for
14: end for
15: end procedure

Single-source shortest path 12

Proposition
ShortestPathsDAG solves the shortest path algorithm on acyclic
networks in O(m+ n) time.

Proof.
Lines 4-5 take O(n) time. Further, TopologicalOrdering takes
O(m+ n) time. The ”for” loop of line 7 runs for each nodes. Then, it
checks each link only once. Lines 9-11 takes O(1) time. Therefore, the
total running time is O(m+ n).

Proposition
The labels d(i),∀i computed by ShortestPathsDAG on acyclic
networks are optimal.

Proof.
Use induction on i.

Single-source shortest path 13

Label setting and label correcting algorithms

▶ Shortest path algorithms assign tentative distance label to each node
that represents an upper bound on the cost of shortest path to that
node.

▶ Depending on how they update these labels, the algorithms can be
classified into two types:

1. Label setting
2. Label correcting

▶ Label setting algorithms make one label permanent in each iteration

▶ Label correcting algorithms keep all labels temporary until the
termination of the algorithm.

▶ Label setting algorithms are more efficient but label correcting
algorithms can be applied to more general class of problems.

Single-source shortest path 14

Dijkstra’s algorithm

A label setting algorithm

1: Input: Graph G(N,A), costs c, and source s
2: Output: Optimal cost labels d and predecessors pred
3: procedure Dijkstra(G, c, s)
4: S ← ϕ;T ← N
5: d(i)←∞,∀i ∈ N{s}; d(s)← 0
6: pred(i)← NA,∀i ∈ N\{s}; pred(s)← 0
7: while T ̸= ϕ do
8: Choose a node i with minimum d(i) from T
9: S ← S ∪ {i};T ← T\{i}

10: for j ∈ FS(i) do
11: if d(j) > d(i) + cij then
12: d(j)← d(i) + cij
13: pred(j)← i
14: end if
15: end for
16: end while
17: end procedure

Single-source shortest path 15

Running time of Dijkstra’s algorithm

Two basic operations:

▶ Node selections: This is performed n times and each time, we need
to scan the temporary labeled nodes. Total node selection time is
n+ (n− 1) + ...+ 1 = O(n2)

▶ Label updates: This operation is performed |FS(i)| times for each
node i. Therefore, this operation requires
O(

∑
i∈N |FS(i)|) = O(m) time.

▶

Therefore, total running time of the algorithm is O(n2 +m) = O(n2)
(for dense networks m = Ω(n2)). One can improve the running time on
sparse networks and with efficient data structures.

Single-source shortest path 16

Label correcting algorithm

▶ Special structure

– Special topology (DAG) – Reaching algorithm
– Non-negative costs – Label setting algorithm

▶ SP on a graph with negative cycles is a hard problem. Our aim is:

– Either detect whether graph has negative cycles
– If not, solve the problem

Single-source shortest path 17

Optimality conditions

Theorem
For every node j ∈ N , let d(j) denote the cost of some directed path
from source s to j. Then, d(j) represent the shortest path costs if and
only if they satisfy the following optimality conditions:

d(j) ≤ d(i) + cij ,∀(i, j) ∈ A (⋆)

Proof.
=⇒ Let d(j) represent the SP cost labels for j ∈ N . Assume that they
do not satisfy the (⋆). Then, some link (i, j) ∈ A must satisfy
d(i) > d(j) + cij . In this case, we can improve the cost of SP to node j
by coming through node i, thereby contradicting the fact that d(j)
represents the SP label of node j.

Single-source shortest path 18

Proof (contd.)
⇐= Consider labels d(j) satisfying (⋆). Let (s = i1, i2..., ik = j) be any
directed path P from source s to node j. The conditions (⋆) imply that

d(j) =d(ik) ≤ d(ik−1) + cik−1ik

d(ik−1) ≤ d(ik−2) + cik−2ik−1

...

d(i2) ≤ di1 + ci1i2 = ci1i2

Adding above inequations, we get
d(j) = d(ik) ≤ cik−1ik + cik−2ik−1

+ · · ·+ ci1i2 =
∑

(i,j)∈P cij . Thus dj
is a LB on the cost of any directed path from s to j. Since d(j) is the
cost of some directed path from s to j, it is also an UB on the SP cost.
Therefore, d(j) is the shortest path cost from s to j.

Single-source shortest path 19

Label correcting algorithm
1: Input: Graph G(N,A), costs c, and source s
2: Output: Optimal cost labels d and predecessors pred
3: procedure LabelCorrecting(G, c, s)
4: SEL = {s}
5: d(i)←∞, ∀i ∈ N{s}; d(s)← 0
6: pred(i)← NA,∀i ∈ N\{s}; pred(s)← 0
7: while SEL ̸= ϕ do
8: Remove an element i from SEL
9: for j ∈ FS(i) do

10: if d(j) > d(i) + cij then
11: d(j)← d(i) + cij
12: pred(j)← i
13: if j not in SEL then
14: SEL← SEL ∪ {j}
15: end if
16: end if
17: end for
18: end while
19: end procedure

Single-source shortest path 20

Running time

▶ Assume that data is integral, cost of each link is at most C, and no
negative cycles.

▶ Each cost label d(j) is bounded from above and below by −nC.
▶ The algorithm updates any label at most 2nC times (worst case

every update reduces the label by 1 unit).
▶ Total number of distance label updates =

∑
i∈N 2nC|FS(i)| =

O(mnC).

Can we do better?
▶ We arrange the links in some order. Then, one iteration of the

algorithm will check for every link (i, j) if it violates the optimality
condition. If it does, then we update d(j) = d(i) + cij .

▶ We repeat above scanning of links for n− 1 iterations.
▶ This implies O(mn) time bound which is strongly polynomial.
▶ This is also called Bellman-Ford algorithm.

Detecting negative cycles
▶ One can terminate when the label of any node falls below −nC.

Single-source shortest path 21

Outline

Introduction

Single-source shortest path

All-pairs shortest path

All-pairs shortest path 22

All-pairs shortest path

All-pairs shortest path 23

Optimality conditions

Theorem
For every pair of nodes (i, j) ∈ N ×N , let d[i, j] represent the cost of
some directed path from i to j satisfying d[i, i] = 0,∀i ∈ N and
d[i, j] ≤ cij ,∀(i, j) ∈ A. These costs represent the all-pairs shortest path
costs if and only if

d[i, j] ≤ d[i, k] + d[k, j],∀i, j, k ∈ N

.

Proof.
=⇒ We use contradiction. Let d[i, j] > d[i, k] + d[k, j] for some
i, j, k ∈ N . Then, the union of the shortest paths from i to k and k to j
is a directed walk. Decompose that walk into a directed path P from i to
j and some directed cycles (with non-negative costs). The cost of P is at
most d[i, k] + d[k, j] < d[i, j], which contradicts the optimal of d[i, j].
⇐= Similar to the one used for previous theorem.

All-pairs shortest path 24

Floyd-Warshall algorithm

Let d
(k)
ij represent the cost of SP from i to j using the nodes only from

{1, 2, . . . , k − 1} as intermediate nodes. Clearly, d
(n+1)
ij represents the SP

cost from i to j.

d(k+1)[i, j] = min

 d(k)[i, j]︸ ︷︷ ︸
SP not passing through k

, d(k)[i, k] + d(k)[k, j]︸ ︷︷ ︸
SP passing through k



All-pairs shortest path 25

Floyd-Warshall algorithm

1: procedure FloydWarshall(G, c)
2: for (i, j) ∈ N ×N do
3: if (i, j) ∈ A then
4: d[i, j]← cij ; pred[i, j]← i
5: else if i == j then
6: d[i, i]← 0; pred[i, j]← NIL

7: else
8: d[i, j]←∞; pred[i, j]← NA

9: end if
10: end for
11: for k = 1 : n do
12: for (i, j) ∈ N ×N do
13: if d[i, j] > d[i, k] + d[k, j] then
14: d[i, j]← d[i, k] + d[k, j]
15: pred[i, j]← pred[k, j]
16: end if
17: end for
18: end for
19: end procedure

Runs in O(n3) timeAll-pairs shortest path 26

Suggested reading

1. AMO Chapter 4 and 5

27

Origins of above algorithms

Figure: (From left to right) Edsger W. Dijkstra, Richard E. Bellman, Lester
Randolph Ford Jr., Robert W Floyd, Stephen Warshall (Pictures source: Wiki,
stanford.edu, and independent.com/)

28

Thank you!

29

	Introduction
	Single-source shortest path
	All-pairs shortest path
	

