Matching in bipartite graphs

Pramesh Kumar

IIT Delhi

April 7, 2024

Introduction

Matching has numerous applications including but not limited to

- Ridesharing/ridehailing (riders to drivers)
- Jobs to employees
- Roommate matching
- and so on

Definitions

Definition (Bipartite graph). A graph G(N, A) is bipartite if we can partition the set of nodes $N = L \cup R$ into two subsets L and R such that $L \cap R = \phi$ and every link in A is incident on one node in L and other node in R.

Definition (Matching). Given an undirected graph G(N, A), a matching is a subset of edges $M \subseteq A$ such that $\forall i \in N$, at most one edge of M is incident on i.

Definition (). A node i is said to be matched by matching M if some edge in M is incident on i, and otherwise, i is unmatched.

Definition (Perfect matching). A matching M is perfect if all nodes are matched i.e., $|M| = \frac{|N|}{2}$.

Definition (Vertex cover). A vertex cover is a set $C \subseteq N$ such that all edges in E are incident on at least one node in C.

Maximum cardinality matching

Definition (Maximum matching). A matching M is called maximum cardinality matching if $|M| \ge |M'|, \forall$ matching |M'| of bipartite G.

LP formulation

Let $x_{ij} = \begin{cases} 1 & \text{if } i \in L \text{ is matched with } j \in R \\ 0 & \text{otherwise} \end{cases}$ Primal Dual (Max matching in bipartite graphs) (Vertex cover in bipartite graphs) $\max_{\mathbf{x}} \max_{\mathbf{x}} \sum_{i \in B} \sum_{i \in L} x_{ij}$ $\underset{\mathbf{u}}{\mathsf{minimize}} \qquad \sum_{i \in \mathcal{N}} u_i$ $\text{subject to} \qquad \sum_{j \in R} x_{ij} = 1, \forall i \in L$ subject to $u_i + u_j \ge 1, \forall (i, j) \in A$ $\sum_{i \in L} x_{ij} = 1, \forall i \in R$ $u_i \geq 0, \forall i \in N$ $x_{ij} > 0, \forall i \in L, \forall j \in R$

Theorem (König)

For any bipartite graph, the maximum size of matching is equal to the minimum size of vertex cover.

Proof.

Follows from strong duality.

Converting max matching into max flow problem

Construct $G^{'}(N^{'},A^{'})$ from G(N,A) as follows:

• Let s be source and t be sink and $N^{'} = N \cup \{s, t\}.$

 $\begin{array}{l} \blacktriangleright \ A^{'} = \{(s,i) \ : \ i \in L\} \cup \{(i,j) \ : \ i \in L, j \in R, \ \text{and} \ (i,j) \in A\} \cup \{(j,t) \ : \ j \in R\}. \end{array}$

• Assign capacity $u_{ij} = 1$ to each edge in A'.

Lemma

Let G(N, A) be a bipartite graph with nodes partition $N = L \cup R$ and let G'(N', A') be its corresponding flow network. If M is a matching in G, then there is an integer-valued flow f in G' with value |f| = |M|. Conversely, if f is an integer-valued flow in G', then there is a matching M in G with cardinality |M| = |f| consisting of edges $(u, v) \in A$ such that f(u, v) > 0.

Remark. The max matching problem can be solved by solving a max flow problem on a modified flow network (e.g., using Ford-Fulkerson labeling algorithm).

Converting max matching into max flow problem

7

Definitions

Definition (*M*-alternating path). Given a matching M in undirected graph G(N, A), an *M*-alternating path is a simple path whose edges alternate between being in M and being in $A \setminus M$.

Definition (*M*-augmenting path). An *M*-alternating path is an *M*-augmenting path if its first and last edges belong to $A \setminus M$. It must contain an odd number of edges.

Remark. By removing the edges in M on an M-augmenting path and including the edges not in M on that path will increase the matching by exactly one more edge than M.

Definition (Symmetric difference). For any two sets X and Y, the symmetric difference of X and Y is $X \bigoplus Y = (X \cup Y) \setminus (Y \cap X)$.

Remark. The operator \bigoplus is commutative and associative.

Lemma

Let M be a matching in undirected graph G(N, A) and let P be an M-augmenting path. Then the set of edges $M' = M \bigoplus P$ is also a maching in G with |M'| = |M| + 1.

Corollary

A matching M in graph G(N, A) is a maximum matching if and only if G contains no M-augmenting path.

Remark.

- 1. Start with $M = \phi$
- 2. Find M-augmenting path P in G (one can use DFS for finding an augmenting path starting from an unmatched node)
- **3**. Set $M = M \bigoplus P$
- 4. Continue steps 2-3 until there does not exist any $M-{\rm augmenting}$ path.
- 5. Finding the M-augmenting path can be done in O(m) time. Therefore, the overall complexity is O(nm). It can be improved to $O(\sqrt{nm})$ by augmenting along several paths (Hopcroft-Karp algorithm).

Weighted bipartite matching problem

Definition (Assignment problem). Given a bipartite graph $G(L \cup R, A)$, and weights $w : A \mapsto \mathbb{R}_+$, find a perfect matching M with maximum total weight $\sum_{(i,j) \in M} w_{ij}$

LP formulation

 $\begin{array}{c|c} \mbox{Primal} & \mbox{Dual} \\ \mbox{(Max-weight matching in bipartite graphs)} \\ \\ \mbox{maximize} & \sum_{j \in R} \sum_{i \in L} w_{ij} x_{ij} & \mbox{minimize} & \sum_{i \in N} u_i \\ \mbox{subject to} & \sum_{j \in R} x_{ij} = 1, \forall i \in L & \mbox{subject to} & u_i + u_j \geq w_{ij}, \forall (i, j) \in A \\ & \sum_{i \in L} x_{ij} = 1, \forall i \in R & \\ & x_{ij} \geq 0, \forall i \in L, \forall j \in R \end{array}$

Using complementary slackness, we know that when $x_{ij} = 1$ i.e., $(i, j) \in M$, then $w_{ij} - u_i - u_j = 0$.

Definition (Labeling). A labeling for a bipartite graph $G(N = L \cup R, A)$ is a function $u : N \mapsto \mathbb{R}$ such that $u_i + u_j \ge w_{ij}, \forall (i, j) \in A$. The labeling is a dual feasible solution.

Definition (Equality subgraph). An equality subgraph corresponding to labeling l is a subgraph $G_l(N, A_l)$ such that $A_l = \{(i, j) \in A : u_i + u_j = w_{ij}\}.$

Theorem (Kuhn-Munkres Theorem)

Let $G(N = L \cup R, A)$ be a bipartite graph where each edge $(i, j) \in A$ has weight w_{ij} . Let **u** be the labeling of G and G_l be the corresponding equality subgraph. If G_l contains a perfect matching M^* , then M^* is an optimal solution to the assignment problem on G.

Remark. Using above algorithm, the max-weight assignment problem reduces to finding right labeling and any perfect matching in the corresponding equality subgraph.

Hungarian algorithm

- **1**. Start with some matching $M = \phi$ and labeling **u** defined as: $u_k = \begin{cases} 0 & \text{if } k \in R \\ \max_{i' \in R} w_{ki} & \text{if } k \in L \end{cases}$
- 2. Repeat until M is a perfect matching.
 - (i) Find an augmenting path in G_l and augment the matching.
 - (ii) If augmenting path does not exist, improve the labeling to $l^{'}$ and go to step (i).

Improving the labeling

- Let P be an alternating path. Let $S \subseteq L$ and $T \subseteq R$ be the respective subset of nodes on path P.
- Compute $\delta_l = \min_{i \in S, i \notin T} \{u_i + u_j w_{ij}\}.$

 $\bullet \text{ Then improve the labeling to } u^{'} \text{ as: } u^{'}_{k} = \begin{cases} u_{k} - \delta_{l} & \text{if } k \in S \\ u_{k} + \delta_{l} & \text{if } k \in T \\ u_{k} & \text{otherwise} \end{cases}$

Complexity

Overall complexity is $O(n^3)$.

Stable matching problem

Consider a set of women L and a set of men R. Each women in $i \in L$ provides the ranking of each men $j \in R$ and vice-versa.

Definition (Blocking pair). Given matching M, $i \in L$ and $j \in R$ forms a blocking pair if i prefers j over their current match and j also prefers i over their current match.

Definition (Stable matching). A stable matching is a perfect matching with no blocking pairs.

Gale-Shapley's Deferred-acceptance algorithm

```
procedure DA(G, ranking)

Assign each man and woman as free.

while some woman i is free do

Let j be the first man on i's ranked list to whom she has not proposed.

if j is free then

i and j get matched (not free)

else if j ranks i higher than their current match i' then

Replace current match i' of j by i and make i' free.

else

j rejects i and i remains free.

end if

end while

end procedure
```

Perfect matching

Theorem (Hall's marriage theorem (1935))

There exists a perfect matching in a bipartite graph G(N, A) if and only if $|\delta(S)| \ge |S|, \forall S \subseteq N$, where $\delta(S)$ represents the set of neighbors of nodes in S.

Remark. A necessary and sufficient condition for a solution of the marriage problem is that each set of k women collectively knows at least k men, for $1\leq k\leq |L|$

Final remarks

- Matching in non-bipartite graphs is more involved.
- Please read about Edmond's blossom algorithm from book if you are interested.

Suggested reading

AMO Chapter 12

https://www.eecs.harvard.edu/cs286r/courses/fall09/papers/galeshapley.pdf

Thank you!