Minimum spanning tree

Pramesh Kumar

IIT Delhi

March 21, 2024

Definitions

Definition (Spanning Tree). A spanning tree of undirected network G is connected acyclic subgraph that spans all the nodes.

Definition (Minimum spanning tree (MST) problem). Given an undirected network $G(N, A)$ and costs $c : E \mapsto \mathbb{R}$, determine a spanning tree T with minimum cost $\sum_{(i,j)\in T}c_{ij}.$

Remark. We consider the undirected network for spanning tree. In case of directed network, the problem (much more difficult problem) is known as rooted aborescence. For a node r , r -aborescence is a spanning tree directed away from r . There is only one directed path from r to every other node.

Remark. For maximum spanning tree, just multiply each cost with by -1 and compute the MST. 2

Applications

- 1. Creating a minimal transit network,
- 2. Connecting different spatial areas with electricity connection,
- 3. Clustering (based on Kruskal's algorithm), and so on...

LP formulation

Generic MST algorithm

- 1: Input: G, c 2: (*Initialization*) $A = \phi$ 3: while A does not form a tree do 4: find a "safe" edge (i, j) for A 5: $A = A \cup \{(i, j)\}\$ 6: end while
- 7: return A

We maintain the following loop invariant.

Prior to each iteration, A is a subset of some MST

Definition (Safe edge).: Any edge added to A satisfying the above loop invariant is called a safe edge.

- 1. Initialization: After line 2, the loop invariant is trivially satisfied.
- 2. Maintenance: The lines 3-5 maintain the loop invariant by only adding "safe" edges.
- 3. Termination: All the edges added to \vec{A} were part of MST, so after termination, the loop invariant must hold.

Q. How to find safe edge?

A few more definitions

Definition (Cut). Any partition $(S, N\backslash S)$ is a cut. We say that an edge (i, j) crosses the cut $(S, N\backslash S)$ if one of the endpoints is in S and other endpoint in $N\backslash S$.

Definition (Tree/Non-tree edges). Edges in a given spanning tree are tree edges, otherwise they are non-tree edges.

Important observations

- 1. For every non-tree edge (i, j) , a spanning tree T has a unique path connecting i and j. Adding edge (i, j) to T will create a cycle.
- 2. Removing any tree edge from a spanning tree will create a cut.

Optimality conditions

Theorem (Cut optimality conditions)

A spanning tree T^\ast is a minimum spanning tree (MST) if and only if it satisfies the following optimality conditions: For every tree edge $(i, j) \in T^*$, $c_{ij} \leq c_{kl}$ for every edge (k, l) contained in the cut formed by removing the edge (i, j) from T^* .

Proof.

 \implies Assume that T^* is MST. Further, assume that the cut optimality conditions are not satisfied, i.e., \exists a tree edge $(i,j) \in T^*$ removing which creates a cut and \exists an edge (k, l) (in original graph) crossing the cut which has cost c_{kl} strictly less than c_{ij} . Then, replacing the edge (i,j) by (k,l) will produce another tree $T^{'}$ whose overall cost strictly less than T^* , which is a contradiction that T^* is MST. ← We need to show that if any tree T^* satisfies the cut optimality conditions, then it must be MST. Suppose $T^{'}$ is a MST such that $T^{'}\neq T^{*}.$ Then, there must exist an edge (i,j) in T^\ast which is not present in $T^{'}$. Removing the edge (i,j) from T^\ast creates a cut $(S, N\backslash S).$ Note that if we add (i, j) to $T^{'}$, then it will create a cycle that must contain another edge (k,l) crossing the cut. Since T^\ast satisfies the cut optimality conditions $c_{ij} \leq c_{kl}$ and since $T^{'}$ is MST, $c_{ij} \geq c_{kl}$ implies that $c_{ij} = c_{kl}$. Now, we replace (i,j) by (k,l) in T^\ast , we produce a different spanning tree which has one or more edges common with $T^{'}$. Repeating this argument, we can transform T^* into MST $T^{'}$. This shows that T^* is also a MST. \Box 7

Figure: Replacing (i, j) by (k, l)

Remark. The cut optimality conditions imply that every edge in a MST is a minimum cost edge across the cut that is defined by removing it from the tree.

Optimality conditions

Theorem

Let F is a subset of edges in some MST and let S be a set of nodes in some component of F. Suppose (i, j) is a minimum cost edge in the cut $(S, N\backslash S)$. Then some MST contains all the edges of in F as well as edge (i, j) .

Proof.

Let $F \subseteq T^*$ (MST). If $(i, j) \in T^*$, we are done. Therefore, suppose $(i, j) \notin T^*$. Then, adding (i, j) to T^* creates a cycle and therefore, $\exists (k,l) \neq (i,j) \in (S,N \backslash S)$. By assumption, $c_{ij} \leq c_{kl}$ and also T^* must satisfy the cut optimality conditions which says $c_{ij} \geq c_{kl}$. So replacing (k, l) by (i, j) will produce another MST that contains F as well as (i, j) . ⊓

Optimality conditions

Theorem (Path optimality conditions)

A spanning tree T^* is a MST if and only if satisfies the following path optimality conditions: For every non-tree edge (k, l) of $G, c_{ij} \leq c_{kl}$ for every edge (i, j) contained in the path in T^* connecting nodes k and l .

Proof.

⇒ Suppose T^* is a MST and \exists a non-tree edge (k,l) and a tree edge (i,j) contained in the path connecting k and l such that $c_{ij} > c_{kl}$. In that case, we can remove (i,j) and add (k,l) creating another tree $T^{'}$ with cost $c(T^{'}) < c(T^{*}),$ contradicting the assumption that T^* is a MST.

 \Leftarrow We'll show that T^* satisfying the path optimality conditions also satisfy the cut optimality conditions, implying that T^* is a MST using previous theorem. Let $(i, j) \in T^*$ and let S and \overline{S} be the set of connected nodes produced by removing edge (i, j) from T^* . Suppose $i \in S$ and $j \in \overline{S}$. Consider any edge $(k, l) \in (S, \overline{S})$. Since T^* contains a unique path joining nodes k and l and since (i, j) is the only edge connecting a node in S and a node in \overline{S} , edge (i, j) must belong to this path. The path optimality conditions implies that $c_{ij} \leq c_{kl}$; since this condition must be valid for every nontree edge (k,l) in the cut $(S,\bar S)$ formed by removing any tree edge (i,j) , T^* satisfy the cut optimality conditions and so it must be MST. П

Kruskal's algorithm

```
1: Input: G, c2: (Initialization)A \leftarrow \phi > Links in MST
 3: for each i \in N do
 4: \text{MAKESET}(i)5: end for
 6: Let A be the set of links sorted in increasing order by their costs c.
 7: for each (i, j) \in A do
 8: if \text{FINDSET}(i) \neq \text{FINDSET}(i) then
 9: A = A \cup \{(i, j)\}\10: UNION(i, j)11: end if
12: end for
13: return A
```
Theorem

Kruskal's algorithm can be implemented in $O(m \log n)$ time.

Example

Prim's algorithm

- \blacktriangleright Based on the cut-optimality condition.
- \blacktriangleright Maintains for every node $d(i)$ and $pred(i)$ representing minimum cost of any edge connecting i to another node in tree and predecessor respectively.
- \blacktriangleright Also maintains a heap Q of all nodes not in the tree yet.
	- Heap is a data structure having a collection of objects with unique key.
	- We can perform operations such as $\text{CREATEHEAP}()$, $\text{INSERT}(i, Q)$, DECREASEKEY (Q, j, c_{ij}) , etc.
	- Check out [heapq](https://docs.python.org/3/library/heapq.html) in Python.

Prim's algorithm

1: Input: G, c, s ▷ Graph, costs, source 2: $d(i) \leftarrow \infty, \forall i \in N\{s\}; d(s) \leftarrow 0$ 3: $pred(i) \leftarrow \text{NA}, \forall i \in N \setminus \{s\}$ $4: Q \leftarrow \text{CreateHEAD}()$ \triangleright Creates a heap Q 5: for each $i \in N$ do 6: $INBERT(Q, i)$ \triangleright Inserts node *i* into heap Q $7⁺$ end for 8: while Q do 9: $i \leftarrow \text{FINDMIN}(Q)$ 10: $D \text{ELETE}(Q, i)$ 11: for $j \in \delta(i)$ do 12: **if** $j \in Q$ and $d(j) > c_{ij}$ then
13: $d(i) \leftarrow c_{ij}$ 13: $d(j) \leftarrow c_{ij}$
14: $pred(j) \leftarrow$ $pred(i) \leftarrow i$ 15: DECREASE $Ker(Q, j, c_{ij})$ \triangleright Reduces the key of j in Q to c_{ij} 16: end if 17: end for 18: end while 19: return $A = \{(pred(i), i) : i \in N \setminus \{s\}\}\$ Theorem Above algorithm runs in $O(m \log n)$ time. Lines4-6: $O(n)$ time; while runs: $O(n)$ times; 9-10: $O(logn)$ time; Line 14

15: $O(logn)$ time. For loop runs: $O(m)$ times;

Sollin's algorithm

- ▶ Sollin's algorithm combines ideas from both Kruskal's and Prim's algorithm.
- ▶ It maintains a set of forests (like Kruskal's) but only selects the edge with minimum cost (like Prim's).
- \blacktriangleright Running time $O(m \log n)$.

Suggested reading

▶ AMO Chapter 13

Thank you!