Minimum spanning tree

Pramesh Kumar

1T Delhi

March 21, 2024

Definitions

A spanning tree of undirected network G is
connected acyclic subgraph that spans all the nodes.

MST Given an
undirected network G/(IN, A) and costs ¢ : £+ IR, determine a spanning
tree 7" with minimum cost), - ¢y

Remark. We consider the undirected network for spanning tree. In case
of directed network, the problem (much more difficult problem) is known
as rooted aborescence. For a node 7, r-aborescence is a spanning tree
directed away from 7. There is only one directed path from 7 to every
other node.

Remark. For maximum spanning tree, just multiply each cost with by —1
and compute the MST.

Applications

1. Creating a minimal transit network,

2. Connecting different spatial areas with electricity connection,

3. Clustering (based on Kruskal's algorithm),

and so on...

LP formulation

Primal

min E CijTij
u :

s.t.

(i,§)€EA
Z T =n—1
(i,5)€A
S wi; <IS|-1L,VSCN
(i,5)€A(S)

zij > 0,9(i,5) € A

Dual

ax(n — 1)\
S

SCN
s.t. A — Z
S:(i,j)€A(S)
pns > 0,VS CN
A free

(1 —1SDus

ps < i, ¥(i,j) € A

Generic MST algorithm

1: Input: G, ¢

2: (Initialization) A = ¢

3: while A does not form a tree do
4 find a "safe" edge (i,j) for A
5 A= AU{(i)))

6: end while

7: return A

We maintain the following loop invariant.
Prior to each iteration, A is a subset of some MST

: Any edge added to A satisfying the above loop
invariant is called a safe edge.
1. Initialization: After line 2, the loop invariant is trivially satisfied.
2. Maintenance: The lines 3-5 maintain the loop invariant by only
adding "safe” edges.
3. Termination: All the edges added to A were part of MST, so after
termination, the loop invariant must hold.

Q. How to find safe edge?

A few more definitions

Any partition (S, N\S) is a cut. We say that an edge
(i,7) crosses the cut (S, V\S) if one of the endpoints is in S and other
endpoint in V\S.

Edges in a given spanning tree are tree
edges, otherwise they are non-tree edges.

Important observations

1. For every non-tree edge (i,7), a spanning tree 7' has a unique path
connecting i and j. Adding edge (i,) to T will create a cycle.

2. Removing any tree edge from a spanning tree will create a cut.

Optimality conditions

Theorem (Cut optimality conditions)

A spanning tree T is a minimum spanning tree (MST) if and only if it
satisfies the following optimality conditions: For every tree edge

(1,7) € T*, ¢;j < ciy for every edge (k. 1) contained in the cut formed by
removing the edge (i, j) from T*.

Proof.

— Assume that 7 is MST. Further, assume that the cut optimality conditions are
not satisfied, i.e., 3 a tree edge (i,j) € T removing which creates a cut and 3 an
edge (k, 1) (in original graph) crossing the cut which has cost ¢y strictly less than ¢;;.
Then, replacing the edge (i, j) by (k,[) will produce another tree T" whose overall
cost strictly less than 7™, which is a contradiction that 7" is MST.

<= We need to show that if any tree 7™ satisfies the cut optimality conditions, then
it must be MST. Suppose T is a MST such that 7" # T*. Then, there must exist an
edge (7,7) in T* which is not present in T Removing the edge (i, 7) from T'* creates
a cut (S, N\S). Note that if we add (7,) to T’ then it will create a cycle that must
contain another edge (k, 1) crossing the cut. Since 7 satisfies the cut optimality
conditions ¢;; < ¢z; and since 7' is MST, ¢;; > ci; implies that ¢;; = c;;. Now, we
replace (i,) by (k,1) in T, we produce a different spanning tree which has one or
more edges common with T Repeating this argument, we can transform 7™ into
MST 7”. This shows that 7 is also a MST. O

@ Q)

O

Figure: Replacing (7, 7) by (k,1)

Remark. The cut optimality conditions imply that every edge in a MST is
a minimum cost edge across the cut that is defined by removing it from
the tree.

Optimality conditions

Theorem

Let F is a subset of edges in some MST and let S be a set of nodes in
some component of F'. Suppose (i, j) is a minimum cost edge in the cut
(S, N\S). Then some MST contains all the edges of in I as well as edge

(i,J)-

Proof.

Let F C 7™ (MST). If (i,7) € T*, we are done. Therefore, suppose
(i,7) ¢ T*. Then, adding (i, j) to T™* creates a cycle and therefore,
(k. 1) # (i,7) € (S, N\S). By assumption, ¢;; < ¢i; and also T must
satisfy the cut optimality conditions which says ¢;; > c;. So replacing

(k,1) by (z,7) will produce another MST that contains /' as well as
(i,). O

Optimality conditions

Theorem (Path optimality conditions)

A spanning tree T is a MST if and only if satisfies the following path
optimality conditions: For every non-tree edge (k,l) of G, ¢;; < ¢y for
every edge (i,j) contained in the path in T* connecting nodes k and .

Proof.

= Suppose 7" is a MST and 3 a non-tree edge (k,[) and a tree edge (i,)
contained in the path connecting k and [such that c;; > cj;. In that case, we can

remove (i,) and add (k,1) creating another tree T" with cost ¢(T") < ¢(T*),
contradicting the assumption that 7" is a MST.

<= We'll show that 7™ satisfying the path optimality conditions also satisfy the cut
optimality conditions, implying that 7™ is a MST using previous theorem. Let

(i,7) € T* and let S and S be the set of connected nodes produced by removing edge
(4,7) from 7. Suppose i € S and j € S. Consider any edge (k,l) € (S5,S). Since T
contains a unique path joining nodes k and [and since (i, j) is the only edge
connecting a node in S and a node in S, edge (i,) must belong to this path. The
path optimality conditions implies that c¢;; < cy;; since this condition must be valid for
every nontree edge (k,1) in the cut (S, S) formed by removing any tree edge (i,), T*
satisfy the cut optimality conditions and so it must be MST. O

10

= e
N B Qo

NI RO R

Kruskal’s algorithm

Input: G, ¢
(Initialization) A <+ ¢ > Links in MST
for each i € N do
MAKESET(7)
end for
Let A be the set of links sorted in increasing order by their costs c.

. for each (i,7) € A do

if FINDSET(7) # FINDSET(j) then
A=AU{(,5))
UNION(z, 7)

end if

. end for
13:

return A

Theorem
Kruskal’s algorithm can be implemented in O(mlogn) time.

11

Example

12

Prim’s algorithm

» Based on the cut-optimality condition.

» Maintains for every node d(i) and pred(i) representing minimum
cost of any edge connecting 7 to another node in tree and
predecessor respectively.

» Also maintains a heap () of all nodes not in the tree yet.

— Heap is a data structure having a collection of objects with unique
key.

— We can perform operations such as CREATEHEAP(), INSERT(¢, (),
DECREASEKEY(Q, j, ¢ij), etc.

— Check out heapq in Python.

13

https://docs.python.org/3/library/heapq.html

Prim’s algorithm

: Input: G s > Graph, costs, source
d(i) < o0,Vi € N{s};d(s) < 0
pred(i) < NA,Vi € N\{s}
Q < CREATEHEAP() > Creates a heap)
for each i € N do
INSERT(Q, %) > Inserts node i into heap
end for
: while Q do
i < FINDMIN(Q)
10: DELETE(Q, ©)
11: for j € 0(¢) do

coNOREWNMH

12: if j€Q and d(j) > c;; then

13: d(_]) < Cij

14: pred(j) < i

15: DECREASEKEY(Q, 7, ¢;5) > Reduces the key of j in Q to ¢;;
16: end if

17: end for

18: end while

19: return A = {(pred(i),i) : i € N\{s}}

Theorem

Above algorithm runs in O(mlogn) time.

Lines4-6: O(n) time; while runs: O(n) times; 9-10: O(logn) time; Line 14
15: O(logn) time. For loop runs: O(m) times;

Sollin’s algorithm

> Sollin’s algorithm combines ideas from both Kruskal's and Prim'’s
algorithm.

> It maintains a set of forests (like Kruskal's) but only selects the edge
with minimum cost (like Prim’s).

» Running time O(mlogn).

15

» AMO Chapter 13

Suggested reading

16

Thank you!

17

