Minimum spanning tree

Pramesh Kumar

IIT Delhi

March 21, 2024

Definitions

Definition (Spanning Tree). A spanning tree of undirected network G is connected acyclic subgraph that spans all the nodes.

Definition (Minimum spanning tree (MST) problem). Given an undirected network G(N, A) and costs $c : E \mapsto \mathbb{R}$, determine a spanning tree T with minimum cost $\sum_{(i,j)\in T} c_{ij}$.

Remark. We consider the undirected network for spanning tree. In case of directed network, the problem (much more difficult problem) is known as rooted aborescence. For a node r, r-aborescence is a spanning tree directed away from r. There is only one directed path from r to every other node.

Remark. For maximum spanning tree, just multiply each cost with by -1 and compute the $\ensuremath{\mathsf{MST}}$.

2

Applications

- 1. Creating a minimal transit network,
- 2. Connecting different spatial areas with electricity connection,
- 3. Clustering (based on Kruskal's algorithm), and so on...

LP formulation

Primal

Dual

-

$$\begin{split} \min_{\mathbf{x}} \sum_{(i,j) \in A} c_{ij} x_{ij} \\ \text{s.t.} \quad \sum_{(i,j) \in A} x_{ij} = n - 1 \\ \sum_{(i,j) \in A(S)} x_{ij} \leq |S| - 1, \forall S \subset N \\ x_{ij} \geq 0, \forall (i,j) \in A \end{split}$$

$$\begin{split} &\max_{\lambda,\mu_S}(n-1)\lambda + \sum_{S \subset N} (1-|S|)\mu_S \\ &\text{s.t. } \lambda - \sum_{S:(i,j) \in A(S)} \mu_S \leq c_{ij}, \forall (i,j) \in A \\ &\mu_S \geq 0, \forall S \subset N \\ &\lambda \text{ free} \end{split}$$

Generic MST algorithm

- 1: Input: G, c2: (Initialization) $A = \phi$ 3: while A does not form a tree do 4: find a "safe" edge (i, j) for A5: $A = A \cup \{(i, j)\}$
- 6: end while
- 7: return A

We maintain the following loop invariant.

Prior to each iteration, A is a subset of some MST

Definition (Safe edge).: Any edge added to A satisfying the above loop invariant is called a safe edge.

- 1. Initialization: After line 2, the loop invariant is trivially satisfied.
- 2. *Maintenance*: The lines 3-5 maintain the loop invariant by only adding "safe" edges.
- 3. Termination: All the edges added to A were part of MST, so after termination, the loop invariant must hold.

Q. How to find safe edge?

A few more definitions

Definition (Cut). Any partition $(S, N \setminus S)$ is a cut. We say that an edge (i, j) crosses the cut $(S, N \setminus S)$ if one of the endpoints is in S and other endpoint in $N \setminus S$.

Definition (Tree/Non-tree edges). Edges in a given spanning tree are tree edges, otherwise they are non-tree edges.

Important observations

- 1. For every non-tree edge (i, j), a spanning tree T has a unique path connecting i and j. Adding edge (i, j) to T will create a cycle.
- 2. Removing any tree edge from a spanning tree will create a cut.

Optimality conditions

Theorem (Cut optimality conditions)

A spanning tree T^* is a minimum spanning tree (MST) if and only if it satisfies the following optimality conditions: For every tree edge $(i,j) \in T^*$, $c_{ij} \leq c_{kl}$ for every edge (k,l) contained in the cut formed by removing the edge (i,j) from T^* .

Proof.

 \implies Assume that T^* is MST. Further, assume that the cut optimality conditions are not satisfied, i.e., \exists a tree edge $(i, j) \in T^*$ removing which creates a cut and \exists an edge (k,l) (in original graph) crossing the cut which has cost c_{kl} strictly less than c_{ij} . Then, replacing the edge (i, j) by (k, l) will produce another tree $T^{'}$ whose overall cost strictly less than T^* , which is a contradiction that T^* is MST. \leftarrow We need to show that if any tree T^* satisfies the cut optimality conditions, then it must be MST. Suppose T' is a MST such that $T' \neq T^*$. Then, there must exist an edge (i, j) in T^* which is not present in T'. Removing the edge (i, j) from T^* creates a cut $(S, N \setminus S)$. Note that if we add (i, j) to T', then it will create a cycle that must contain another edge (k, l) crossing the cut. Since T^* satisfies the cut optimality conditions $c_{ij} \leq c_{kl}$ and since T' is MST, $c_{ij} \geq c_{kl}$ implies that $c_{ij} = c_{kl}$. Now, we replace (i, j) by (k, l) in T^* , we produce a different spanning tree which has one or more edges common with T'. Repeating this argument, we can transform T^* into MST T' This shows that T^* is also a MST

7

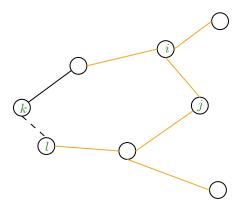


Figure: Replacing (i, j) by (k, l)

Remark. The cut optimality conditions imply that every edge in a MST is a minimum cost edge across the cut that is defined by removing it from the tree.

Optimality conditions

Theorem

Let F is a subset of edges in some MST and let S be a set of nodes in some component of F. Suppose (i, j) is a minimum cost edge in the cut $(S, N \setminus S)$. Then some MST contains all the edges of in F as well as edge (i, j).

Proof.

Let $F \subseteq T^*$ (MST). If $(i, j) \in T^*$, we are done. Therefore, suppose $(i, j) \notin T^*$. Then, adding (i, j) to T^* creates a cycle and therefore, $\exists (k, l) \neq (i, j) \in (S, N \setminus S)$. By assumption, $c_{ij} \leq c_{kl}$ and also T^* must satisfy the cut optimality conditions which says $c_{ij} \geq c_{kl}$. So replacing (k, l) by (i, j) will produce another MST that contains F as well as (i, j).

Optimality conditions

Theorem (Path optimality conditions)

A spanning tree T^* is a MST if and only if satisfies the following path optimality conditions: For every non-tree edge (k, l) of G, $c_{ij} \leq c_{kl}$ for every edge (i, j) contained in the path in T^* connecting nodes k and l.

Proof.

 $\implies \text{Suppose } T^* \text{ is a MST and } \exists \text{ a non-tree edge } (k,l) \text{ and a tree edge } (i,j) \\ \text{contained in the path connecting } k \text{ and } l \text{ such that } c_{ij} > c_{kl}. \text{ In that case, we can} \\ \text{remove } (i,j) \text{ and add } (k,l) \text{ creating another tree } T^{'} \text{ with cost } c(T^{'}) < c(T^*), \\ \text{contradicting the assumption that } T^* \text{ is a MST}. \end{cases}$

Kruskal's algorithm

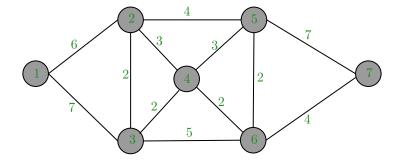
1: **Input**: *G*, *c* 2: (Initialization) $A \leftarrow \phi$ ▷ Links in MST 3: for each $i \in N$ do MAKESET(i)4: 5: end for 6: Let A be the set of links sorted in increasing order by their costs c. 7: for each $(i, j) \in A$ do if FINDSET(i) \neq FINDSET(j) then 8: $A = A \cup \{(i, j)\}$ 9: UNION(i, j)10. end if 11.

- 12: end for
- 13: return A

Theorem

Kruskal's algorithm can be implemented in $O(m \log n)$ time.

Example



Prim's algorithm

Based on the cut-optimality condition.

- Maintains for every node d(i) and pred(i) representing minimum cost of any edge connecting i to another node in tree and predecessor respectively.
- ► Also maintains a heap Q of all nodes not in the tree yet.
 - Heap is a data structure having a collection of objects with unique *key*.
 - We can perform operations such as CREATEHEAP(), INSERT(i, Q), DECREASEKEY(Q, j, c_{ij}), etc.
 - Check out heapq in Python.

Prim's algorithm

1: Input: G, c, s \triangleright Graph, costs, source 2: $d(i) \leftarrow \infty, \forall i \in N\{s\}; d(s) \leftarrow 0$ **3**: $pred(i) \leftarrow NA, \forall i \in N \setminus \{s\}$ 4: $Q \leftarrow \text{CREATEHEAP}()$ \triangleright Creates a heap Q5: for each $i \in N$ do **6**: INSERT(Q, i) \triangleright Inserts node *i* into heap Q 7 end for 8: while Q do 9: $i \leftarrow \text{FINDMIN}(Q)$ 10: DELETE(Q, i)11: for $j \in \delta(i)$ do if $j \in Q$ and $d(j) > c_{ij}$ then 12: 13: $d(j) \leftarrow c_{ij}$ 14: $pred(j) \leftarrow i$ 15: DECREASEKEY (Q, j, c_{ij}) \triangleright Reduces the key of j in Q to c_{ij} 16: end if 17: end for 18[.] end while 19: return $A = \{(pred(i), i) : i \in N \setminus \{s\}\}$ Theorem Above algorithm runs in $O(m \log n)$ time.

Lines4-6: O(n) time; while runs: O(n) times; 9-10: O(logn) time; Line 14 15: O(logn) time. For loop runs: O(m) times;

Sollin's algorithm

- Sollin's algorithm combines ideas from both Kruskal's and Prim's algorithm.
- It maintains a set of forests (like Kruskal's) but only selects the edge with minimum cost (like Prim's).
- Running time $O(m \log n)$.

Suggested reading

► AMO Chapter 13

Thank you!