
Minimum spanning tree

Pramesh Kumar

IIT Delhi

March 21, 2024

Definitions

Definition (Spanning Tree). A spanning tree of undirected network G is
connected acyclic subgraph that spans all the nodes.

Definition (Minimum spanning tree (MST) problem). Given an
undirected network G(N,A) and costs c : E 7→ R, determine a spanning
tree T with minimum cost

∑
(i,j)∈T cij .

Remark. We consider the undirected network for spanning tree. In case
of directed network, the problem (much more difficult problem) is known
as rooted aborescence. For a node r, r-aborescence is a spanning tree
directed away from r. There is only one directed path from r to every
other node.

Remark. For maximum spanning tree, just multiply each cost with by −1
and compute the MST. 2

Applications

1. Creating a minimal transit network,

2. Connecting different spatial areas with electricity connection,

3. Clustering (based on Kruskal’s algorithm),

and so on...

3

LP formulation

Primal

min
x

∑
(i,j)∈A

cijxij

s.t.
∑

(i,j)∈A

xij = n − 1

∑
(i,j)∈A(S)

xij ≤ |S| − 1, ∀S ⊂ N

xij ≥ 0, ∀(i, j) ∈ A

Dual

max
λ,µS

(n − 1)λ +
∑
S⊂N

(1 − |S|)µS

s.t. λ −
∑

S:(i,j)∈A(S)

µS ≤ cij , ∀(i, j) ∈ A

µS ≥ 0, ∀S ⊂ N

λ free

4

Generic MST algorithm

1: Input: G, c
2: (Initialization)A = ϕ
3: while A does not form a tree do
4: find a ”safe” edge (i, j) for A
5: A = A ∪ {(i, j)}
6: end while
7: return A

We maintain the following loop invariant.

Prior to each iteration, A is a subset of some MST

Definition (Safe edge).: Any edge added to A satisfying the above loop
invariant is called a safe edge.
1. Initialization: After line 2, the loop invariant is trivially satisfied.
2. Maintenance: The lines 3-5 maintain the loop invariant by only

adding ”safe” edges.
3. Termination: All the edges added to A were part of MST, so after

termination, the loop invariant must hold.

Q. How to find safe edge?
5

A few more definitions

Definition (Cut). Any partition (S,N\S) is a cut. We say that an edge
(i, j) crosses the cut (S,N\S) if one of the endpoints is in S and other
endpoint in N\S.

Definition (Tree/Non-tree edges). Edges in a given spanning tree are tree
edges, otherwise they are non-tree edges.

Important observations

1. For every non-tree edge (i, j), a spanning tree T has a unique path
connecting i and j. Adding edge (i, j) to T will create a cycle.

2. Removing any tree edge from a spanning tree will create a cut.

6

Optimality conditions

Theorem (Cut optimality conditions)
A spanning tree T ∗ is a minimum spanning tree (MST) if and only if it
satisfies the following optimality conditions: For every tree edge
(i, j) ∈ T ∗, cij ≤ ckl for every edge (k, l) contained in the cut formed by
removing the edge (i, j) from T ∗.

Proof.
=⇒ Assume that T ∗ is MST. Further, assume that the cut optimality conditions are
not satisfied, i.e., ∃ a tree edge (i, j) ∈ T ∗ removing which creates a cut and ∃ an
edge (k, l) (in original graph) crossing the cut which has cost ckl strictly less than cij .

Then, replacing the edge (i, j) by (k, l) will produce another tree T
′
whose overall

cost strictly less than T ∗, which is a contradiction that T ∗ is MST.
⇐= We need to show that if any tree T ∗ satisfies the cut optimality conditions, then

it must be MST. Suppose T
′
is a MST such that T

′ ̸= T ∗. Then, there must exist an

edge (i, j) in T ∗ which is not present in T
′
. Removing the edge (i, j) from T ∗ creates

a cut (S,N\S). Note that if we add (i, j) to T
′
, then it will create a cycle that must

contain another edge (k, l) crossing the cut. Since T ∗ satisfies the cut optimality

conditions cij ≤ ckl and since T
′
is MST, cij ≥ ckl implies that cij = ckl. Now, we

replace (i, j) by (k, l) in T ∗, we produce a different spanning tree which has one or

more edges common with T
′
. Repeating this argument, we can transform T ∗ into

MST T
′
. This shows that T ∗ is also a MST. 7

k

l

i

j

Figure: Replacing (i, j) by (k, l)

Remark. The cut optimality conditions imply that every edge in a MST is
a minimum cost edge across the cut that is defined by removing it from
the tree.

8

Optimality conditions

Theorem
Let F is a subset of edges in some MST and let S be a set of nodes in
some component of F . Suppose (i, j) is a minimum cost edge in the cut
(S,N\S). Then some MST contains all the edges of in F as well as edge
(i, j).

Proof.
Let F ⊆ T ∗ (MST). If (i, j) ∈ T ∗, we are done. Therefore, suppose
(i, j) /∈ T ∗. Then, adding (i, j) to T ∗ creates a cycle and therefore,
∃(k, l) ̸= (i, j) ∈ (S,N\S). By assumption, cij ≤ ckl and also T ∗ must
satisfy the cut optimality conditions which says cij ≥ ckl. So replacing
(k, l) by (i, j) will produce another MST that contains F as well as
(i, j).

9

Optimality conditions

Theorem (Path optimality conditions)
A spanning tree T ∗ is a MST if and only if satisfies the following path
optimality conditions: For every non-tree edge (k, l) of G, cij ≤ ckl for
every edge (i, j) contained in the path in T ∗ connecting nodes k and l.

Proof.
=⇒ Suppose T ∗ is a MST and ∃ a non-tree edge (k, l) and a tree edge (i, j)
contained in the path connecting k and l such that cij > ckl. In that case, we can

remove (i, j) and add (k, l) creating another tree T
′
with cost c(T

′
) < c(T ∗),

contradicting the assumption that T ∗ is a MST.
⇐= We’ll show that T ∗ satisfying the path optimality conditions also satisfy the cut
optimality conditions, implying that T ∗ is a MST using previous theorem. Let
(i, j) ∈ T ∗ and let S and S̄ be the set of connected nodes produced by removing edge
(i, j) from T ∗. Suppose i ∈ S and j ∈ S̄. Consider any edge (k, l) ∈ (S, S̄). Since T ∗

contains a unique path joining nodes k and l and since (i, j) is the only edge
connecting a node in S and a node in S̄, edge (i, j) must belong to this path. The
path optimality conditions implies that cij ≤ ckl; since this condition must be valid for
every nontree edge (k, l) in the cut (S, S̄) formed by removing any tree edge (i, j), T ∗

satisfy the cut optimality conditions and so it must be MST.

10

Kruskal’s algorithm

1: Input: G, c
2: (Initialization)A← ϕ ▷ Links in MST
3: for each i ∈ N do
4: MakeSet(i)
5: end for
6: Let A be the set of links sorted in increasing order by their costs c.
7: for each (i, j) ∈ A do
8: if FindSet(i) ̸= FindSet(j) then
9: A = A ∪ {(i, j)}

10: Union(i, j)
11: end if
12: end for
13: return A

Theorem
Kruskal’s algorithm can be implemented in O(m log n) time.

11

Example

6

7

4

3 3

2 2

5

2

7

4

1

2

3

4

5

6

72

12

Prim’s algorithm

▶ Based on the cut-optimality condition.

▶ Maintains for every node d(i) and pred(i) representing minimum
cost of any edge connecting i to another node in tree and
predecessor respectively.

▶ Also maintains a heap Q of all nodes not in the tree yet.

– Heap is a data structure having a collection of objects with unique
key.

– We can perform operations such as CreateHeap(), Insert(i, Q),
DecreaseKey(Q, j, cij), etc.

– Check out heapq in Python.

13

https://docs.python.org/3/library/heapq.html

Prim’s algorithm

1: Input: G, c, s ▷ Graph, costs, source
2: d(i)←∞, ∀i ∈ N{s}; d(s)← 0
3: pred(i)← NA, ∀i ∈ N\{s}
4: Q← CreateHeap() ▷ Creates a heap Q
5: for each i ∈ N do
6: Insert(Q, i) ▷ Inserts node i into heap Q
7: end for
8: while Q do
9: i←FindMin(Q)

10: Delete(Q, i)
11: for j ∈ δ(i) do
12: if j ∈ Q and d(j) > cij then
13: d(j)← cij
14: pred(j)← i
15: DecreaseKey(Q, j, cij) ▷ Reduces the key of j in Q to cij
16: end if
17: end for
18: end while
19: return A = {(pred(i), i) : i ∈ N\{s}}

Theorem
Above algorithm runs in O(m log n) time.

Lines4-6: O(n) time; while runs: O(n) times; 9-10: O(logn) time; Line
15: O(logn) time. For loop runs: O(m) times;

14

Sollin’s algorithm

▶ Sollin’s algorithm combines ideas from both Kruskal’s and Prim’s
algorithm.

▶ It maintains a set of forests (like Kruskal’s) but only selects the edge
with minimum cost (like Prim’s).

▶ Running time O(m log n).

15

Suggested reading

▶ AMO Chapter 13

16

Thank you!

17

