Minimum cost flow problem

Pramesh Kumar

IIT Delhi

April 4, 2024

Introduction

- ▶ Shortest path problems model link cost but not link capacity. On the other hand, the max flow problem models link capacity but not link cost.
- ▶ Mincost flow problem (MCFP) models both link costs as well as link capacity.
- \blacktriangleright It is fundamental problem with numerous applications such as production planning, scheduling, transportation of goods, etc.

Definition (Minimum cost flow problem). Given a directed graph $G(N, A)$, cost of traversing links $c : A \mapsto \mathbb{R}$, lower and upper bounds (capacity) on the flow on links $l : A \mapsto \mathbb{R}$ and $u : A \mapsto \mathbb{R}$ resp., and supply/demand at each node $b : N \mapsto \mathbb{R}$, find the least cost shipment of a commodity.

Assumptions

- \blacktriangleright All data (costs, capacities, supply/demand) are integral.
- \blacktriangleright The network is directed.
- ▶ Supply/demand balance, i.e., $\sum_{i\in N} b(i) = 0$ and MFCP has a feasible solution. $¹$ </sup>

▶ All costs are non-negative.

 1 One can find a feasible solution to MCFP by solving a max flow problem on a modified network with a "super source" connecting each supply node using a link with capacity $b(i)$ and a "super sink" connecting each demand node using a link with capacity $b(i)$. If the max flow saturates all the source links, then that flow is a feasible solution to MCFP.

LP formulation

Primal

Dual

$$
\min_{\mathbf{x}} \sum_{(i,j) \in A} c_{ij} x_{ij}
$$
\n
$$
\max_{\mathbf{d}, \alpha} \sum_{i \in N} b(i) \pi_i - \sum_{(i,j) \in A} \alpha_{ij} u_{ij}
$$
\n
$$
\text{s.t. } \sum_{j \in FS(i)} x_{ij} - \sum_{j \in BS(i)} x_{ji} = b(i), \forall i \in N \text{ s.t. } \pi_i - \pi_j - \alpha_{ij} \le c_{ij}, \forall (i, j) \in A
$$
\n
$$
0 \le x_{ij} \le u_{ij}, \forall (i, j) \in A
$$
\n
$$
\pi_i \text{ free}, \forall i \in N
$$

where, if $b(i) > 0, b(i) < 0$, and $b(i) = 0$, then i is called supply node, demand node, and transshipment node respectively.

$$
= \max_{\pi} \sum_{i \in N} b(i)\pi_i - \sum_{(i,j) \in A} \max\{-c_{ij}^{\pi}, 0\} u_{ij}
$$

$$
\text{where, } \quad c_{ij}^{\pi} = c_{ij} - \pi_i + \pi_j \quad \text{is}
$$
\n
$$
\text{called reduced cost of link } (i, j) \in A
$$

Residual network

Residual network corresponding to flow x is created as below:

- ▶ Replace each link (i, j) by two links (i, j) and (j, i) .
- ▶ Put c_{ij} cost on link (i, j) and $-c_{ij}$ cost on link (j, i) .
- ▶ Put $r_{ij} = u_{ij} x_{ij}$ as the residual capacity on link (i, j) and $r_{ii} = x_{ii}$ as the residual capacity on link (j, i) .
- ▶ Remove links with zero residual capacity.

Negative cycle optimality conditions

Theorem

A feasible solution x^* is an optimal solution if and only if the residual network $G(\mathbf{x}^*)$ contains no negative cost (directed) cycles.

Reduced costs

Given node potentials (or dual variables corresponding to conservation constraints) $\pi(i)$, $\left|\,c_{ij}^{\pi}=c_{ij}-\pi(i)+\pi(j)\,\right|$ is called the reduced cost of link $(i, j) \in A$. Economic interpretation: $-\pi(i)$: cost of obtaining a unit of this commodity at node i. $c_{ij} - \pi(i)$: the cost of obtaining unit commodity to node j from node i .

Lemma

1. For a directed path P from node k to node l , $\sum_{(i,j)\in P} c_{ij}^{\pi} = \sum_{(i,j)\in P} c_{ij} - \pi(k) + \pi(l).$

2. For a directed cycle W , $\sum_{(i,j) \in W} c_{ij}^{\pi} = \sum_{(i,j) \in W} c_{ij}$

Proof.

1. Let
$$
P = \{k = i_1, ..., i_h = l\}
$$
 be a directed path. Then, $\sum_{(i,j) \in P} c_{ij}^{\pi}$
\n $= c_{i_1 i_2}^{\pi} + \cdots + c_{i_{h-1} i_h}^{\pi} = (c_{i_1 i_2} - \pi(i_1) + \pi(i_2)) + \cdots + (c_{i_{h-1} i_h} - \pi(i_{h-1}) + \pi(i_h)) = \sum_{(i,j) \in P} c_{ij} - \pi(k) + \pi(l).$

2. Trivial.

Remark. 2 implies that if W is a negative cost cycle wrt costs c_{ij} , then $\frac{1}{t}$ $\frac{1}{7}$ is also a negative cycle wrt costs c_{ij}^{π} .

Reduced costs optimality conditions

Theorem

A feasible solution \mathbf{x}^* is an optimal solution if and only if there exists node potentials π which satisfy $c_{ij}^{\pi} \geq 0, \forall (i, j) \in G(\mathbf{x}^*)$.

Proof.

← Assume that for a feasible solution $x^*, c_{ij}^{\pi} \ge 0, \forall (i,j) \in G(x^*)$. Then, we know that $\sum_{(i,j)\in W}c_{ij}^\pi\geq 0$ for every directed cycle W in $G(\mathbf{x}^*)$ (previous lemma). Then, there does not exists any cycle with negative cost. Using negative cycle optimality conditions, we know that x^* is optimal.

 \implies Assume that \mathbf{x}^* is optimal, then using negative cycle optimality conditions, we know that there are no negative cost directed cycles in $G(\mathbf{x}^*)$. Then, find the shortest path from node 1 (w.l.o.g.) to all other nodes. Since, there are no no negative cost directed cycles, we can find shortest path labels $d(i)$ for all nodes satisfying $d(j) \leq d(i) + c_{ij}, \forall (i, j) \in G(\mathbf{x}^*)$. Define $\pi(i) = -d(i), \forall i \in N$. Clearly, $c_{ij} - (-d(i)) + (-d(j)) \geq 0.$ □

Remark. $c_{ij}^{\pi}=c_{ij}-\pi(i)+\pi(j)\geq 0$ means that cost of obtaining the commodity at node j is no more than the cost of the commodity if we obtain at node i and incur the transportation cost in sending it from node i to node j .

Complementary slackness optimality conditions

Theorem

A feasible solution \mathbf{x}^* is an optimal solution if and only if there exists node potentials π that (together with \mathbf{x}^*) satisfy the following complementary slackness optimality conditions:

- If $c_{ij}^{\pi} > 0$, then $x_{ij}^* = 0$.
- ▶ If $0 < x_{ij}^* < u_{ij}$, then $c_{ij}^{\pi} = 0$.
- If $c_{ij}^{\pi} < 0$, then $x_{ij}^* = u_{ij}$.

Proof.

We'll show that if \mathbf{x}^* and π satisfy the reduced cost optimality conditions, then they also satisfy complementary conditions.

- \blacktriangleright If $c_{ij}^{\pi} > 0$, then residual network cannot contain link (j,i) because $c_{ji}^{\pi}=-c_{ij}^{\pi}<0$ contradicting the reduced cost optimality conditions. Therefore, $x_{ij}^* = 0.$
- ▶ If $0 < x_{ij}^* < u_{ij}$, then the residual network contains both (i, j) and (j, i) . Further, reduced cost optimality conditions state that $c_{ij}^{\pi}\geq 0$ as well as $c_{ji}^{\pi}\geq 0.$ But we know that $c_{ij}^{\pi} = -c_{ji}^{\pi}$. Therefore, $c_{ij}^{\pi} = 0$.
- \blacktriangleright If $c_{ij}^{\pi} < 0$, then residual network cannot contain link (i,j) since its reduced cost violates the reduced cost optimality conditions. Therefore, $x^*_{ij} = u_{ij}.$

п

Evaluating optimal node potentials given optimal flows

▶ Construct $G(\mathbf{x}^*)$

 \triangleright Solve the shortest path from node 1 (pick arbitrarily) to all other nodes and compute distance labels $d(i)$ (which are well defined since no negative cycle exists at optimality).

$$
\blacktriangleright \text{ Assign } \pi(i) = -d(i)
$$

Remark. Above node potentials are optimal because $c_{ij}^{\pi} = c_{ij} - \pi(i) + \pi(j) = c_{ij} - (-d(i)) + (-d(j)) \ge 0 \implies d(j) \le d(i) + c_{ij}$ which are shortest path optimality conditions.

Evaluating optimal flows given optimal node potentials

- ▶ Compute reduced cost c_{ij}^{π} of each link $(i, j) \in A$.
- ▶ If $c_{ij}^{\pi} > 0$, then assign $x_{ij}^* = 0$. Remove (i, j) from the network.
- ▶ If $c_{ij}^{\pi} < 0$, then assign $x_{ij}^* = u_{ij}$. Remove (i, j) from the network. Reduce $b(i)$ by u_{ij} and increase $b(j)$ by u_{ij}
- \blacktriangleright The network $G^{'}(N, A^{'})$ with modified supply/demand $b^{'}(i)$ at nodes.
- ▶ Add new links from "super source" to supply nodes (with capacity $\overline{b}'(i)$) and demand nodes to "super sink" (with capacity $-\overline{b}'(i)$).
- ▶ Solve the max flow problem from super source to super sink. Assign x_{ij}^{\ast} equal to the optimal solution of max flow problem.

Remark. Above node potentials are optimal because $c_{ij}^{\pi} = c_{ij} - \pi(i) + \pi(j) = c_{ij} - (-d(i)) + (-d(j)) \ge 0 \implies d(j) \le d(i) + c_{ij}$ which are shortest path optimality conditions.

Cycle-canceling algorithm

- 1: **procedure** CYCLECANCELING(G , c, u, b)
- 2: find a feasible flow x^2 in the network.
- 3: while $G(x)$ contains a negative cycle do
- 4: find a negative cycle W^3 .
- 5: $\delta = \min\{r_{ij} : (i, j) \in W\}$
- 6: augment δ units of flow along W
- 7: update $G(\mathbf{x})$
- 8: end while
- 9: end procedure
- \blacktriangleright The upper bound on the initial cost of flow is mCU .
- ▶ The lower bound on the optimal cost of flow is $-mCU$.
- ▶ Each iteration of above algorithm changes the objective value by $\left(\sum_{(i,j)\in A} c_{ij}\right)\delta < 0.$
- \blacktriangleright Finding the cycle takes $O(mn)$ time using label correcting algorithm.
- \triangleright Since data is integral, total time in running the algorithm is $O(mn \times 2mCU) = O(m^2nCU)$.

² possibly by solving max flow problem on a modified network

 3 possibly using label correcting algorithm

Theorem

If all link capacities and supplies/demands of nodes are integer, the minimum cost flow problem has always integer minimum cost flow.

Example

Final remarks

▶ We did not study many other algorithms to solve this problem. I suggest that you study the following from AMO book.

- Successive shortest path algorithm
- Out-of-kilter algorithm
- Primal-dual algorithm
- Lagrangian relaxation-based algorithm
- Network simplex algorithm
- ▶ The algorithms we studied had pseudo-polynomial complexity. The scaling algorithms have polynomial complexity.
	- Minimum cost scaling algorithm
	- Cost scaling algorithm
	- Double scaling algorithm

Suggested reading

▶ AMO Chapter 9 and 10

Thank you!