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Introduction

> Shortest path problems model link cost but not link capacity. On the
other hand, the max flow problem models link capacity but not link
cost.

» Mincost flow problem (MCFP) models both link costs as well as link
capacity.

» It is fundamental problem with numerous applications such as
production planning, scheduling, transportation of goods, etc.

Given a directed graph
G(N, A), cost of traversing links ¢ : A — R, lower and upper bounds
(capacity) on the flow on links [ : A+ R and u : A~ R resp., and
supply/demand at each node b : N > R, find the least cost shipment of
a commodity.



Assumptions

> All data (costs, capacities, supply/demand) are integral.
> The network is directed.

» Supply/demand balance, i.e., >, b(i) = 0 and MFCP has a
feasible solution.!

» All costs are non-negative.

10ne can find a feasible solution to MCFP by solving a max flow problem on a
modified network with a "super source” connecting each supply node using a link with
capacity b(i) and a "super sink” connecting each demand node using a link with
capacity b(7). If the max flow saturates all the source links, then that flow is a feasible
solution to MCFP.



LP formulation

Primal Dual
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where, if b(i) > 0,b(i) < 0, and b(i) = 0,

then i is called supply node, demand node, and
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Residual network

Residual network corresponding to flow x is created as below:
» Replace each link (7, j) by two links (4,7) and (j,1).
» Put ¢;; cost on link (¢, j) and —¢;; cost on link (j,1).
» Put r;; = u;; — ;; as the residual capacity on link (4, j) and
r;; = x;; as the residual capacity on link (7, 7).

» Remove links with zero residual capacity.



Negative cycle optimality conditions

Theorem
A feasible solution x* is an optimal solution if and only if the residual
network G(x*) contains no negative cost (directed) cycles.



Reduced costs

Given node potentials (or dual variables corresponding to conservation

7T

constraints) (i), | ¢/, = ¢;; — m(i) + 7(j) | is called the reduced cost of
link (i,7) € A.
Economic interpretation: —m (i
commodity at node 7. ¢;; — 7(
to node j from node .
Lemma

1. For a directed path P from node k to node [,

Z(i,j)eP iy = Z(’i,,j)eP cij — (k) +m(l).
2. For a directed cycle W, 57, i oy ¢l = D21 jyew Cij

): cost of obtaining a unit of this
1) : the cost of obtaining unit commodity

Proof.

1. Let P ={k =1i1,...,i5, = l} be a directed path. Then, Z(zﬁ,])eP cfj
T N (Ciyig — m(i1) +m(i2)) + -+ (Cif, 1, — 7(in—1) +
m(in) = S yep i — w(k) +7(0).

2. Trivial.

Remark. 2 implies that if 11/ is a negative cost cycle wrt costs c;;, then i 7
is also a negative cycle wrt costs ¢7;.



Reduced costs optimality conditions

Theorem
A feasible solution x* is an optimal solution if and only if there exists
node potentials ™ which satisfy ¢I. > 0,Y(i,j) € G(x*).

1] —

Proof.
<— Assume that for a feasible solution x*, > 0,V(i,7) € G(x*). Then, we know
that Z(i.j)EW' (:fj > 0 for every directed cycle W in G(x*) (previous lemma). Then,
there does not exists any cycle with negative cost. Using negative cycle optimality
conditions, we know that x* is optimal.
— Assume that x* is optimal, then using negative cycle optimality conditions, we
know that there are no negative cost directed cycles in G(x*). Then, find the shortest
path from node 1 (w.l.o.g.) to all other nodes. Since, there are no no negative cost
directed cycles, we can find shortest path labels d(i) for all nodes satisfying
d(j) < d(i) +c¢;;,Y(i,j) € G(x*). Define (i) = —d(i),Vi € N. Clearly,
cij — (—=d(D) + (~d()) > 0.

O

Remark. ¢, = ¢;; — m(i) + 7(j) > 0 means that cost of obtaining the
commodity at node j is no more than the cost of the commodity if we
obtain at node i and incur the transportation cost in sending it from
node 7 to node ;.



Complementary slackness optimality conditions

Theorem
A feasible solution x* is an optimal solution if and only if there exists
node potentials 7 that (together with x*) satisfy the following
complementary slackness optimality conditions:

> Ifci; >0, then z}; = 0.

> If0 < ;1;;]- < u;;, then (:‘} =0.

> If({‘j < 0, then rL*J = U;j.

Proof.
We'll show that if x* and 7 satisfy the reduced cost optimality conditions, then they
also satisfy complementary conditions.

> If ¢, > 0, then residual network cannot contain link (7,7) because
T o= fcfj < 0 contradicting the reduced cost optimality conditions. Therefore,

> If 0 < a}; < uyj, then the residual network contains both (i, j) and (j, ).
Further, reduced cost optimality conditions state that c}fj >0 as well as c;rﬁ > 0.
But we know that c¢f; = —c7,. Therefore, c; = 0. : '

> If ¢, <0, then residual network cannot contain link (i, j) since its reduced cost
violates the reduced cost optimality conditions. Therefore, x;} = Usj.

A



Evaluating optimal node potentials given optimal flows

» Construct G(x*)

» Solve the shortest path from node 1 (pick arbitrarily) to all other
nodes and compute distance labels d(7) (which are well defined since
no negative cycle exists at optimality).

> Assign 7(i) = —d(i)

Remark. Above node potentials are optimal because
ef; = ciy—m(i)+7(j) = ciy—(—d(D)+(~d(j)) = 0 = d(j) < d(i)+c;,
which are shortest path optimality conditions.
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Evaluating optimal flows given optimal node potentials

\4

>

Compute reduced cost cf; of each link (i,j) € A.

If ¢f; > 0, then assign 2, = 0. Remove (7, j) from the network.

If ¢7; < 0, then assign «7; = u;;. Remove (i, j) from the network.
Reduce b(i) by u;; and increase b(j) by u;;

The network G (N, A") with modified supply/demand b (i) at nodes.

Add new links from "super source” to supply nodes (with capacity
b (7)) and demand nodes to "super sink” (with capacity —b (i)).

Solve the max flow problem from super source to super sink. Assign
x;; equal to the optimal solution of max flow problem.

Remark. Above node potentials are optimal because

7T
cr;
whi

— cij—m(i)+(j) = ciy—(=d(i))+(=d(j)) > 0 = d(j) < d(i)+c
ch are shortest path optimality conditions.
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Cycle-canceling algorithm
: procedure CYCLECANCELING((, ¢, u, b)

find a feasible flow x? in the network.

while (G(x) contains a negative cycle do
find a negative cycle 1773,
d = min{r;; : (i,j) € W}
augment 0 units of flow along W
update G(x)

end while

end procedure

LN REODMRH

» The upper bound on the initial cost of flow is mCU.

v

The lower bound on the optimal cost of flow is —mCU.

» Each iteration of above algorithm changes the objective value by
(Z(i.j)ez\ (’ij) 0 <0.

» Finding the cycle takes O(mn) time using label correcting algorithm.

» Since data is integral, total time in running the algorithm is
O(mn x 2mCU) = O(m?*nCU).

2possibly by solving max flow problem on a modified network
3possibly using label correcting algorithm
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Theorem
If all link capacities and supplies/demands of nodes are integer, the
minimum cost flow problem has always integer minimum cost flow.
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Example
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Final remarks

» We did not study many other algorithms to solve this problem. |
suggest that you study the following from AMO book.
— Successive shortest path algorithm
— Out-of-kilter algorithm
— Primal-dual algorithm
— Lagrangian relaxation-based algorithm
— Network simplex algorithm
» The algorithms we studied had pseudo-polynomial complexity. The
scaling algorithms have polynomial complexity.
— Minimum cost scaling algorithm
— Cost scaling algorithm
— Double scaling algorithm
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Suggested reading

» AMO Chapter 9 and 10
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Thank you!
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