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Motivation: Recursion

▶ Suppose you want to calculate f(n) = n!

▶ You know that if you were given the value of f(n− 1), then you can
easily compute the value of f(n). How?
f(n) = n× f(n− 1) = n× (n− 1)!.

▶ Similarly, to compute the value of f(n− 1), you need to evaluate
f(n− 2).

▶ At last, you know that f(1) = 1.

▶ In general, one can write

f(n) =

{
1 n = 1

nf(n− 1) n > 1
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Dynamic Programming

▶ Suppose we have a large optimization problem at hand, which
cannot be solved easily.

▶ However, we realize that we can solve this problem by solving similar
smaller subproblems.

▶ Similarly, we can those subproblems by solving even smaller
subproblems.

▶ Continuing in this fashion, we will encounter the subproblems that
can be trivially solved.

▶ Typically, the number of subproblems to solve should be polynomial
in input size.
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Shortest path problem

Find the shortest path from 1 to 7. The link costs are shown over the
links.
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Shortest path problem

▶ Let Vi be the cost of shortest path from node i to 7 and cij be the
cost of traversing link (i, j).

▶ Assume that if you are given the V2 (cost of shortest path from 2 to
7) and V3 (cost of shortest path from 3 to 7), you can easily
evaluate the cost of shortest path from 1 to 7.

V1 = min{6 + V2, 7 + V3}
▶ Similarly, you can compute V2 if you are given V5 and V4.
▶ Continuing in the same fashion, we will encounter V7, i.e., the cost

of shortest path from 7 to 7, which we know is equal to 0.
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Shortest path problem

▶ In general, we have

Vi =

{
0 if i = t

minj∈FS(i){cij + Vj} if i ̸= t

▶ The following observation can be made: If the shortest path from s
to t passes through node k, then the subpaths (s⇝ t) and (k ⇝ t)
must be shortest paths from s to k and k to t respectively.

▶ If this were not true, then you can construct a shorter path from s
to t, which is a contradiction.

▶ To solve the above problem, we’ll use the fact that V7 = 0, which
can help evaluate the values of V5 and V6. Such a technique is
called backward recursion.

▶ To trace the shortest path, let’s assume

µ(i) = argminj∈FS(i){cij + Vj},∀i ̸= t

Solving SP using DP 8



Shortest path problem
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▶ V5 = min{7 + V7} = 7, µ(5) = 7,

▶ V6 = min{2 + V5, 4 + V7} = min{9, 4} = 4, µ(6) = 7,

▶ V4 = min{3 + V5, 2 + V6} = {10, 6} = 6, µ(4) = 6,

▶ V3 = min{2 + V4, 5 + V6} = min{8, 9} = 8, µ(3) = 4

▶ V2 = min{4 + V5, 3 + V4, 2 + V3} = min{11, 9, 10} = 9, µ(2) = 4

▶ V1 = min{6 + V2, 7 + V3} = min{15, 15} = 15, µ(1) = 2, 3

There are two shortest paths from 1 to 7, both having cost = 15. The
shortest paths are given as: 1− 2− 4− 6− 7 and 1− 3− 4− 6− 7.
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General framework of Dynamic Programming

▶ Dynamic Programming is quite helpful in formulating problems
which involve sequential decision making.

▶ For deterministic problems, we attempt to find the following
components:

– State: The state is the information about the system that is enough
to summarize present condition. Let us denote the state space by S
indexed by s.

– Actions: At each state, there are only few actions one can take. Let
us denote the set of actions by A(s).

– Reward/Cost: For each action a ∈ A(s), there is an immediate
reward or cost c(s, a).

– Transitioning state: Once one takes the action a ∈ A(s) at state s,
the system transitions to a new state denotes by s′(x, a).

– Value function: It denotes the optimal value if we choose the optimal
action in this state and onward. Let us denote it using V (s).

– Our aim is to minimize the total cost from an initial state.

V (s) = min
a∈A(s)

{c(x, a) + V (s
′
(x, a))}

▶ Above equation is called Bellman’s principle of optimality.
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Knapsack problem

Given a set of n items, each with a weight wi and a value ai, determine
which items to include in the Knapsack so that the total weight is less
than or equal to a given limit W and the total value is as large as
possible.

Z =maximize
x

n∑
i=1

aixi (1)

subject to
n∑

i=1

wixi ≤ W (2)

xi ∈ {0, 1},∀i = 1, ..., n (3)

Can we solve the above problem using DP?
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DP formulation of Knapsack Problem

▶ State: (i, b) represent the items from 1 to i to pick from and
available knapsack capacity b.

▶ Action: Whether to pick item i or not. In case, wi > b, we do not
have choice to pick item i.

▶ Reward: If we pick item i, we get the value ai.

▶ Value function: Z(i, b) represent the maximum value of the selected
items if we restrict our selection to the items 1 through i and
available knapsack capacity b.

▶ Principle of optimality:

Z[i, b] = max{Z[i− 1, b], ai + Z[i− 1, b− wi]}

We need to compare the value of picking or not picking the item i.
If we pick the item i, we get the value of ai but our next state will
be (i− 1, b− wi). If we do not pick the item i, we do not get any
new value, and our next state will be i− 1, b.

▶ Our goal is to find Z[n,W ].
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Origins of Dynamic Programming

Figure: Richard Ernest Bellman (Source: Pinterest)

Richard Ernest Bellman was an American applied mathematician who
first developed dynamic programming in 1953. (Source: AMO)
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Final thoughts

▶ DP is an important tool for solving complex problems by breaking
down it into smaller and easier subproblems.

▶ The key is to find the state and recursion formula.

▶ Under uncertainty, there are some amazing results. Please refer to
material on Sequential Decision Making under uncertainty.

16



Thank you!
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