Dynamic Programming

Pramesh Kumar

IIT Delhi

February 5, 2024

Motivation

Solving SP using DP

General framework

Solving Knapsack using DP

Motivation

Motivation: Recursion

- Suppose you want to calculate f(n) = n!
- You know that if you were given the value of f(n − 1), then you can easily compute the value of f(n). How?
 f(n) = n × f(n − 1) = n × (n − 1)!.
- Similarly, to compute the value of f(n-1), you need to evaluate f(n-2).
- At last, you know that f(1) = 1.
- In general, one can write

$$f(n) = \begin{cases} 1 & n = 1\\ nf(n-1) & n > 1 \end{cases}$$

Motivation

Dynamic Programming

- Suppose we have a large optimization problem at hand, which cannot be solved easily.
- However, we realize that we can solve this problem by solving similar smaller subproblems.
- Similarly, we can those subproblems by solving even smaller subproblems.
- Continuing in this fashion, we will encounter the subproblems that can be trivially solved.
- Typically, the number of subproblems to solve should be polynomial in input size.

Motivation

Motivation

Solving SP using DP

General framework

Solving Knapsack using DP

Solving SP using DP

Find the shortest path from $1\ {\rm to}\ 7.$ The link costs are shown over the links.

- ► Let V_i be the cost of shortest path from node i to 7 and c_{ij} be the cost of traversing link (i, j).
- ► Assume that if you are given the V₂ (cost of shortest path from 2 to 7) and V₃ (cost of shortest path from 3 to 7), you can easily evaluate the cost of shortest path from 1 to 7.

$$V_1 = \min\{6 + V_2, 7 + V_3\}$$

- Similarly, you can compute V_2 if you are given V_5 and V_4 .
- Continuing in the same fashion, we will encounter V₇, i.e., the cost of shortest path from 7 to 7, which we know is equal to 0.

► In general, we have

$$V_{i} = \begin{cases} 0 & \text{if } i = t \\ \min_{j \in FS(i)} \{c_{ij} + V_{j}\} & \text{if } i \neq t \end{cases}$$

- ► The following observation can be made: If the shortest path from s to t passes through node k, then the subpaths (s → t) and (k → t) must be shortest paths from s to k and k to t respectively.
- If this were not true, then you can construct a shorter path from s to t, which is a contradiction.
- ▶ To solve the above problem, we'll use the fact that $V_7 = 0$, which can help evaluate the values of V_5 and V_6 . Such a technique is called backward recursion.
- To trace the shortest path, let's assume

$$\mu(i) = \operatorname{argmin}_{j \in FS(i)} \{ c_{ij} + V_j \}, \forall i \neq t$$

Solving SP using DP

- $V_5 = \min\{7 + V_7\} = 7, \mu(5) = 7,$
- $V_6 = \min\{2 + V_5, 4 + V_7\} = \min\{9, 4\} = 4, \mu(6) = 7$,
- $V_4 = \min\{3 + V_5, 2 + V_6\} = \{10, 6\} = 6, \mu(4) = 6,$
- ► $V_3 = \min\{2 + V_4, 5 + V_6\} = \min\{8, 9\} = 8, \mu(3) = 4$
- ► $V_2 = \min\{4 + V_5, 3 + V_4, 2 + V_3\} = \min\{11, 9, 10\} = 9, \mu(2) = 4$
- ► $V_1 = \min\{6 + V_2, 7 + V_3\} = \min\{15, 15\} = 15, \mu(1) = 2, 3$

There are two shortest paths from 1 to 7, both having cost = 15. The shortest paths are given as: 1 - 2 - 4 - 6 - 7 and 1 - 3 - 4 - 6 - 7.

Solving SP using DP

Motivation

Solving SP using DP

General framework

Solving Knapsack using DP

General framework

General framework of Dynamic Programming

- Dynamic Programming is quite helpful in formulating problems which involve sequential decision making.
- For deterministic problems, we attempt to find the following components:
 - State: The state is the information about the system that is enough to summarize present condition. Let us denote the state space by S indexed by S.
 - Actions: At each state, there are only few actions one can take. Let us denote the set of actions by A(s).
 - Reward/Cost: For each action $a \in A(s)$, there is an immediate reward or cost c(s, a).
 - Transitioning state: Once one takes the action $a \in A(s)$ at state s, the system transitions to a new state denotes by s'(x, a).
 - Value function: It denotes the optimal value if we choose the optimal action in this state and onward. Let us denote it using V(s).
 - Our aim is to minimize the total cost from an initial state.

$$V(s) = \min_{a \in A(s)} \{ c(x, a) + V(s'(x, a)) \}$$

► Above equation is called Bellman's principle of optimality. General framework

Motivation

Solving SP using DP

General framework

Solving Knapsack using DP

Solving Knapsack using DP

Knapsack problem

Given a set of n items, each with a weight w_i and a value a_i , determine which items to include in the Knapsack so that the total weight is less than or equal to a given limit W and the total value is as large as possible.

$$Z = \underset{\mathbf{x}}{\operatorname{maximize}} \qquad \sum_{i=1}^{n} a_{i}x_{i} \qquad (1)$$

subject to
$$\sum_{i=1}^{n} w_{i}x_{i} \leq W \qquad (2)$$
$$x_{i} \in \{0,1\}, \forall i = 1, ..., n \qquad (3)$$

Can we solve the above problem using DP?

Solving Knapsack using DP

DP formulation of Knapsack Problem

- State: (i, b) represent the items from 1 to i to pick from and available knapsack capacity b.
- Action: Whether to pick item i or not. In case, w_i > b, we do not have choice to pick item i.
- Reward: If we pick item i, we get the value a_i .
- ▶ Value function: *Z*(*i*, *b*) represent the maximum value of the selected items if we restrict our selection to the items 1 through *i* and available knapsack capacity *b*.
- Principle of optimality:

$$Z[i, b] = \max\{Z[i-1, b], a_i + Z[i-1, b-w_i]\}$$

We need to compare the value of picking or not picking the item i. If we pick the item i, we get the value of a_i but our next state will be $(i-1, b-w_i)$. If we do not pick the item i, we do not get any new value, and our next state will be i-1, b.

• Our goal is to find Z[n, W].

Solving Knapsack using DP

Origins of Dynamic Programming

Figure: Richard Ernest Bellman (Source: Pinterest)

Richard Ernest Bellman was an American applied mathematician who first developed dynamic programming in 1953. (Source: AMO)

Final thoughts

- DP is an important tool for solving complex problems by breaking down it into smaller and easier subproblems.
- ▶ The key is to find the state and recursion formula.
- Under uncertainty, there are some amazing results. Please refer to material on Sequential Decision Making under uncertainty.

Thank you!