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Reading material

▶ Goetschalckx Chapter 3-4

▶ Ghiani et al. Chapter 2

▶ Chopra et al. Chapter 7

▶ Chapter 2 from Production and Operations Management by Steven
Nahmias, 2018
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Need for forecasting

▶ Firms need forecasting of sales of both new and existing products for
planning and execution of all operations activities.

▶ Forecasting can be a source of competitive advantage by improving
customer service and costs associated to mismatch between supply
and demand.

3



Production philosophies

Definition (Make-to-order (MTO)).: Production is only started after the
complete order for a product been received. This is to avoid forecasting
of demand.

Definition (Make-to-stock (MTS)).: Production planning that procures in
anticipation of forecasted future demand.
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Characteristics of forecasts

▶ They are usually wrong.

▶ A good forecast is more than a single number.

▶ Aggregate forecasts are more accurate than disaggregate forecasts

▶ The longer the forecast horizon, the less accurate the forecast will be

▶ The farther up the supply chain a company is (or the farther from
the customer), the greater the distortion of information it receives.
Collaborative forecasting based on sales to the end consumer helps
upstream enterprises reduce the forecast error.

▶ Forecast should not be used to the exclusion of known information.
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Pattern classification

▶ Demand pattern (observations over time) can be regular or irregular.
▶ If the pattern is regular the future values can be predicted based on

past or historical values.
▶ Common regular patterns are constant pattern, trend pattern,

seasonal pattern, or combination of both trend and seasonal pattern.
▶ It is common to decompose any forecast into trend, seasonal, and

random components.
▶ As long as random component is small compared to the underlying

pattern, accurate forecasts can be obtained using mathematical
techniques such as regression and time-series.

▶ Once the demand for final product is known, it is usually easy to
know the demand for subcomponents, raw materials, and resources.
The derived demand is recorded in bill of materials (BOM).

Definition (Trend). Demand consistently increases or decreases over time.
Definition (Seasonality). Demand shows peaks and valleys at consistent
intervals.
Definition (Random error). Variations that cannot be explained or
predicted.
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Pattern classification

Figure: Time series patterns1

1Source: Chapter 2, Production and Operations Management by Steven Nahmias,
2018
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Types of forecasting methods

1. Subjective methods

– Sales force composites
– Customer surveys
– Jury of executive opinion
– The Delphi method

2. Objective methods

– Causal models
– Time-series models
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Notations

▶ Dt: observed demand for time period t

▶ {Dt}t≥1: time series of observed demand

▶ Ft,t+τ : forecast made in time period t for period t+ τ (we are
making forecast τ period into the future after observing the demand
for time period t and before observing the demand for time period
t+ 1)

▶ Ft = Ft−1,t: forecast made in period t− 1 for period t
(one-step-ahead forecast)
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Forecast error

et: forecast error in period t (difference between the forecast value and
actual demand for that period). Also referred to as residual.

For multiple-step-ahead forecast,

et = Ft−τ,t −Dt (1)

For one-step-ahead forecast,

et = Ft −Dt (2)

Let e1, · · · , en be the forecast errors observed over n time periods.
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Error bias

A desirable property of forecasts is that they should be unbiased.
Mathematically, E{ei} = 0.

Figure: Forecast errors over time2

2Source: Chapter 2, Production and Operations Management by Steven Nahmias,
2018
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Measures for evaluating forecasts

Let e1, · · · , en be the forecast errors observed over n time periods.
1. Mean absolute deviation (MAD)

MAD =
1

n

n∑
i=1

|ei| (3)

2. Mean squared error (MSE)

MSE =
1

n

n∑
i=1

e2i (4)

3. Root mean squared error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

e2i (5)

4. Mean absolute percentage error (MAPE)

MAPE =
1

n

n∑
i=1

∣∣∣ ei
Di

∣∣∣× 100 (6)
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Methods for forecasting stationary series

Definition (Stationary series). A series with each observation can be
represented by a constant plus a random variation component.

Dt = µ+ ϵt (7)

where µ is the constant corresponding to the mean of the series and ϵt is
random error with mean zero and variance σ2.

We will discuss the following two methods:

1. Moving averages

2. Exponential smoothing
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Moving averages

Definition (Moving average). A moving average of order N is simply the
arithmetic average of the most recent N observations.

For one-step-ahead forecasting,

Ft =
1

N

t−1∑
i=t−N

Di (8)

Remark. Multi-step-ahead and one-step-ahead forecasts are identical in

case of moving averages.

Ft+τ = Ft+1,∀τ ≥ 1 (9)
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Moving averages

Remark. Moving averages lags behind the trend. Consider the following
example.

Period Demand MA(3) MA(6)
1 2
2 4
3 6
4 8 4
5 10 6
6 12 8
7 14 10 7
8 16 12 9
9 18 14 11
10 20 16 13
11 22 18 15
12 24 20 17
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Moving averages
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Exponential smoothing

In this case, the current forecast is the convex combination of last
forecast and the current values of demand.

Ft = αDt−1 + (1− α)Ft−1 (10)

where 0 ≤ α ≤ 1 is called smoothing constant. One can write,

Ft = Ft−1 − α(Ft−1 −Dt−1) = Ft−1 − αet−1 (11)

i.e., forecast in period t is forecast in period t− 1 minus some fraction of
observed forecast error in period t− 1.
For period t− 1,

Ft−1 = αDt−2 + (1− α)Ft−2 (12)

Substituting (12) in (10), we get

Ft =αDt−1 + (1− α)(αDt−2 + (1− α)Ft−2)

=αDt−1 + α(1− α)Dt−2 + (1− α)2Ft−2
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Exponential smoothing

Continuing in the same fashion,

Ft =

∞∑
i=0

α(1− α)iDt−i−1 =

∞∑
i=0

aiDt−i−1

where, weights are a0 > a1 > · · · > ai = α(1− α)i and
∑∞

i=0 ai = 1.

Remark. Exponential smoothing applies a declining set of weights to all
past data.

Remark. Multi-step-ahead and one-step-ahead forecasts are identical in
case of exponential smoothing.
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Exponential smoothing

One could fit the exponential curve g(i) = α exp(−αi) to the weight
function α(1− α)i. Hence, the “exponential smoothing” name
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Forecast error for moving averages

Recall that for stationary time series,

Dt = µ+ ϵt (13)

hwere ϵt ∼ N (0, σ2) For period t,

et = Ft −Dt

=
1

N

t−1∑
i=t−N

Di −Dt

This leads to E{et} = 1
N

∑t−1
i=t−N E{Di} − E{Dt} = Nµ

N − µ = 0.
MA(N) is unbiased.

Methods for stationary series 23



Forecast error for moving averages

How about the variance?

V ar(Ft −Dt) =V ar(Ft) + V ar(Dt)

=

∑t−1
i=t−N V ar(Di)

N2
+ V ar(Dt)

=
Nσ2

N2
+ σ2

=σ2N + 1

N

Since Dt ∼ N (µ, σ2), forecast error et ∼ N (0, σ2
(
N+1
N

)
)
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Forecast error for exponential smoothing

Recall

Ft =

∞∑
i=0

α(1− α)iDt−i−1

This means,

E{Ft −Dt} =µ

∞∑
i=0

α(1− α)i − µ = 0

V ar(Ft −Dt) =α2σ2
∞∑
i=0

(1− α)2i + σ2

=
α2σ2

1− (1− α)2
+ σ2 =

2σ2

2− α

Remark.

1. ES(α) is unbiased.

2. Since Dt ∼ N (µ, σ2), forecast error et ∼ N (0, 2σ2

2−α )
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Moving averages versus exponential smoothing

▶ A moving average of order N and exponential smoothing with
smoothing constant α would have the same distribution of error if

2

2− α
=

N + 1

N
=⇒ α =

2

N + 1

Remark. This does not mean that forecasts obtained by both
methods are the same.

▶ Both methods assume stationary process which may not be always
true.

▶ Both methods will lag behind the trend if one exists.

▶ Both methods are based on weighted average of past data.

▶ ES is weighted average of all past data whereas MA is average of
only last N periods of data.

▶ ES requires storing only the most recent data point (while moving
averages requires storing the N most recent data points).
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Trend-based forecasting methods

1. Regression analysis

2. Double exponential smoothing (Holt’s method)
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Linear regression analysis

1. State the problem

2. Model specification

– An equation linking response and explanatory variables
– Probability distribution of response variables

3. Parameter estimation (e.g., using Maximum Likelihood Estimation
(MLE))

4. Check model adequacy (how well the model fits and summarizes the
data)

5. Inference (for frequentist approach, we create confidence intervals,
test hypothesis, and interpret results)
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State the problem

We have data on response variable {Yi}ni=1, which is to be predicted by
independent variables {xi}ni=1. Create a linear relationship between Y
and x.
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Model specification

Let us have the following relationship between response variables and
predictor variables:

Yi = β0 + β1xi + ei

where, β0 is the intercept and
β1 is the coefficient of x, and ei is the random error. Since, we do not
expect every point to fall on the line, there would be some error equal to
ei = Yi − β0 − β1xi. Let’s assume this random error ei follows i.i.d.
normal distribution with mean 0 and variance σ2, i.e.,

ei ∼ N (0, σ2)

Then,

Yi ∼ N (β0 + β1xi, σ
2)
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Parameter estimation

We need to estimate unknown parameters β0 and β1 in our model. One
of the most common technique is maximum likelihood estimation (MLE).
This is because ML estimates have good properties such as consistency,
unbiassness, and efficiency. We can write the likelihood as below:

L(β0, β1) =

n∏
i=1

1

σ
√
2π

e−
1

2σ2 (Yi−β0−β1xi)
2

(14)

Taking the log of the above function:

l(β0, β1) = log(L(β0, β1)) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(Yi − β0 − β1xi)
2

(15)

To maximize this function, equate its gradient equal to zero.

∂

∂β0

n∑
i=1

(Yi − β0 − β1xi)
2 = 0 (16)

∂

∂β1

n∑
i=1

(Yi − β0 − β1xi)
2 = 0 (17)
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Parameter estimation

This would give you a system of equations, which can be solved for
β0, β1. Notice the least square term in (15). We are minimizing the sum
of squares of error between given and predicted value.

[
β0

β1

]
=

[
n

∑n
i=1 xi∑n

i=1 xi

∑n
i=1 x

2
i

]−1 [ ∑n
i=1 Yi∑n

i=1 xiYi

]
(18)

We will not cover model adequacy and inference steps. For more
interests, pick any book on statistical inference.
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Double exponential smooting (Holt’s method)

▶ It uses two smoothing parameters: α for the value of the series
(intercept) and β for the trend (the slope).

St = αDt + (1− α)(St−1 +Gt−1) (19)

Gt = β(St − St−1) + (1− β)Gt−1 (20)

where, St is the value of intercept at time t and Gt is the value of
the slope at time t.

▶ The first equation is the convex combination of most current
observation of demand Dt and the prior forecast (previous intercept
plus slope)

▶ The second equation can be explained as follows. Our new estimate
of intercept St causes us to revise our estimate of slope Gt using
convex combination of change in intercept and the prior slope.

▶ τ -step-ahead forecast made in period t is given by

Ft,t+τ = St + τGt (21)
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Season-based forecasting methods

A seasonal series is one that has a pattern that repeats every N periods.
We refer to the number of periods (N) before the pattern begins to
repeat as the length of the season.

Seasonality is specified by associating a multiplier with each period such
that ct, for t = 1, · · · , N , such that

∑
t ct = N . It indicates the average

amount that the demand in period t is above or below the overall
average. For example, c3 = 1.25 means that the demand in the third
period of the season is 25 % above the overall average demand.

Figure: A seasonal demand series3

3Source: Chapter 2, Production and Operations Management by Steven Nahmias,
2018
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Seasonal factors for stationary data

1. Compute the sample mean of all the data.

2. Divide each observation by the sample mean (this gives a seasonal
factor for each period of observed data)

3. Average the factors for like periods within each season; these
averages correspond to the N seasonal factors.
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Winter’s method

▶ Winter’s method is type of triple exponential smoothing method.

▶ We assume a demand process of the following form

Dt = (µ+Gt)ct + ϵt (22)

where µ is the base value (value of the intercept at t = 0), G is the
slope (trend), ctis the seasonality factor for the t-th period in the
season,ϵt is random noise.

▶ We also assume that the length of the season is N , so that∑
t ct = N , and that ct values are the same in each season.
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Winter’s method

▶ In each period t, St, Gt, and ct are updated as follows:

1. The series

St = α(Dt−N/ct−N ) + (1− α)(St−1 +Gt−1) (23)

2. The slope

Gt = β(St − St−1) + (1− β)Gt−1 (24)

3. The seasonal factors

ct = γ(Dt−N/St) + (1− γ)ct−N (25)

▶ The forecast made in period in period t for a future period t+ τ :

Ft,t+τ = (St + τGt)ct+τ−N (26)

for τ ≤ N(for t > N , the seasonality factor would of the form
ct+τ−iN with i = 2, 3, · · · )
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Other methods we did not cover

▶ Box-Jenkins method (exploits possible dependencies
(autocorrelation) among values of the series from period to period).

▶ Simulation for complex scenarios

▶ Machine learning models (neural network, etc.)

▶ Discrete choice (can be used when past data is not available)
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Thank you!
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