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Introduction

▶ In a supply chain network, suppliers need to send products over
transportation channels through various intermediate facilities to the
customers.

▶ There may be capacity limits of transportation channels,
intermediate facilities, and available goods.

▶ Such interaction between various parts of supply chain can be
characterized using a graph G(N,A), where N denotes various
facilities and A represents the connection between different parts of
the supply chain.

▶ The links may have capacity constraints.

▶ There may be cost of traversing the links.

▶ The overall supply of goods/services from sources to sinks is
formulated as a network flow problem.
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Maximum flow problem

Given a capacitated directed network G(N,A) and capacity of links
u : A 7→ R, find the maximum value of flow that can be sent between
two special nodes, namely source s ∈ N and sink t ∈ N , without
exceeding the capacity of any link in the network.
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Maximum flow problem example

What is the maximum number of bogeys manufactured in Detroit that
can be shipped to a warehouse in San Francisco if there is a limit on how
many compartments can be shipped across each link of the train network?

Figure: Golf cart shipping
(Source:https://ieda.ust.hk/dfaculty/ajay/courses/ieem101/lecs/graphs/graph-maxflow.pdf)

Max flow 7



Flow

Definition (Flow). A flow in G is a real-valued function x : A 7→ R that
satisfies two properties:

1. Capacity constraints

0 ≤ xij ≤ uij ,∀(i, j) ∈ A (1)

2. Flow conservation∑
j∈FS(i)

xij −
∑

j∈BS(i)

xij = 0, ∀i ∈ N\{s, t} (2)

∑
j∈FS(i)

xsj = v (3)

∑
j∈BS(i)

xjt = v (4)

For the max flow problem, we need to maximize v.
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Residual network corresponding to a flow

Residual capacity rij(x) =


uij − xij if (i, j) ∈ A

xji if (j, i) ∈ A

0 otherwise

▶ Either one of the first two cases will occur (assumption 5).

▶ Residual network consists of links whose capacities represent how
the flow can change on links.

▶ We only have links with positive residual capacities.

▶ For (i, j) ∈ A, even if do not have (j, i) ∈ A, we might still have
(j, i) in the residual network. The purpose of creating this link to
decrease the flow on (i, j) ∈ A so as to increase the overall flow
from s to t.

Definition (Augmenting path). A path with non-zero residual capacity is
an augmenting path.
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Example
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Figure: The first figure show the flow and capacities in the network. The
second figure shows the residual network for the given flow. It further shows an
augmenting path in green color.
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Types of algorithms

1. Augmenting path algorithms

2. Preflow-push algorithms
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Ford-Fulkerson method

1: procedure AugmentingPath(G, c, u, s, t, x)
2: Initialize flow x = 0
3: while ∃ an augmenting path P in the residual network G(x) do
4: Augment the flow along P .
5: end while
6: return x
7: end procedure
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Example: Augmenting the flow
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Figure: Augmenting the flow along path s− 2− 3− t
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Cut

Definition (s− t cut). An s− t cut is a partition of nodes into two
subsets S and T = N\S such that s ∈ S and t ∈ T .

Definition (Flow across cut). The flow across an s− t cut (S, T ) is given
as:

x(S, T ) =
∑
i∈S

∑
j∈T

xij −
∑
i∈S

∑
j∈T

xji (5)

Definition (Capacity of cut). The capacity of an s− t cut (S, T ) is given
as:

u(S, T ) =
∑
i∈S

∑
j∈T

uij (6)
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Example
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Figure: An s− t cut

S = {s, 1, 2} and T = {3, 4, t}.
x(S, T ) = x13 + x24 − x32 = 12 + 11− 4 = 19 and
u(S, T ) = u13 + u24 = 12 + 14 = 26.
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Minimum cut problem

Among all the s− t cuts in the network, find one with minimum capacity.
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LP formulation

Max flow problem

max
x,v

v

s.t.
∑

j∈FS(i)

xij −
∑

j∈BS(i)

xji =


v if i = s

−v if i = t

0 ∀i ∈ N\{s}

0 ≤ xij ≤ uij , ∀(i, j) ∈ A

Min cut problem

min
λ,µ

∑
(i,j)∈A

λijuij

s.t. µi − µj + λij ≥ 0, ∀(i, j) ∈ A

− µs + µt = 1

λij ≥ 0, ∀(i, j) ∈ A

Any cut (S, T ) can be associated to the dual problem as µi = 0, if i ∈ S and µi = 1, if i ∈ T .
λij = 1, if i ∈ S, j ∈ T , 0, otherwise
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Max-flow min-cut theorem

Theorem (Strong duality)
If x be a flow in the network G(N,A) with source s and sink t, then the
following conditions are equivalent.

1. v =
∑

j∈FS(s) xsj is a maximum flow in G.

2. The residual network G(x) contains no augmenting path.

3. v = u(S, T ) for some cut (S, T ) of G.
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Minimum cost flow problem

Given a directed graph G(N,A), cost of traversing links c : A 7→ R, lower
and upper bounds (capacity) on the flow on links l : A 7→ R and
u : A 7→ R resp., and supply/demand at each node b : N 7→ R, find the
least cost shipment of a commodity.
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LP formulation

Primal

min
x

∑
(i,j)∈A

cijxij

s.t.
∑

j∈FS(i)

xij −
∑

j∈BS(i)

xji = b(i), ∀i ∈ N

0 ≤ xij ≤ uij , ∀(i, j) ∈ A

where, if b(i) > 0, b(i) < 0, and b(i) = 0,
then i is called supply node, demand node, and
transshipment node respectively.
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Algorithms

▶ To save time, we are skipping algorithms for mincost flow problem.
Those who are interested, please refer to this link.
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https://prameshk.github.io/CVL851/Lec/MCF.pdf


Thank you!
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