Elementary definitions in graph theory

Pramesh Kumar

IIT Delhi

February 22, 2025

Introduction

Definition (Network). A network is interconnection among set of items.

Internet network

Figure: Source: https://www.discovery.org/a/25/

Social network

Figure: Source: Medium

Highway network

Figure: Twin cities highway network

Transit network

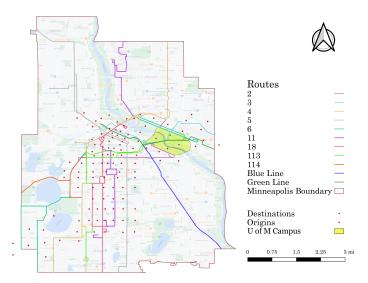


Figure: South Minneapolis transit network

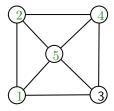
Airline network

Figure: Source: Sarah Randolph on ResearchGate

Undirected graph

Definition (Undirected graph/network). An undirected graph G is a pair (N, A), where N is the set of nodes and A is the set of links whose elements are unordered pair of distinct nodes.

Example(s). $N = \{1, 2, 3, 4, 5\},\$ $A = \{(1, 2), (1, 3), (1, 5), (5, 4), (5, 3), (5, 2), (2, 4), (3, 4)\}$

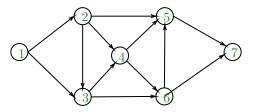


Remark. Let |N| = n. Then, $|E| = m \leq \frac{n(n-1)}{2}$.

Directed graph

Definition (Directed network/graph). A directed graph is pair (N, A), where N denotes the set of nodes/vertices and $A \subseteq N \times N$ denotes the set of links/edges/arcs whose elements are ordered pair of distinct nodes.

Example(s). $N = \{1, 2, 3, 4, 5, 6, 7\}$ $A = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (3, 6), (4, 5), (4, 6), (5, 7), (6, 5), (6, 7)\}$



Definition (). If $e = (i, j) \in A$, then

- 1. i and j are endpoints of e.
- 2. i is the tail node and j is the head node of e.
- 3. (i, j) emanates from i and terminates at node j.
- 4. (i, j) is incident to nodes i and j.
- 5. (i, j) is outgoing link of node i and incoming link of node j.

Definition (Degree). The number of incoming and outgoing links of a node $i \in N$ are called indegree and outdegree respectively. The sum of indegree and outegree is called degree.

Definition (Multilinks). Two or more links with same head and tail nodes.

Definition (Loop). A link whose tail and head nodes are the same.

Note: In this course, we assume that graphs contain no loops or multiarcs.

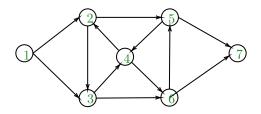
Definition (Subgraph). A graph G'(N', A') is a subgraph of G(N, A) if $N' \subseteq N$ and $A' \subseteq A$. A subgraph G'(N', A') of G(N, A) is said to be induced by N' if A' contains links with their end points in N'.

Definition (Walk). A collection of links $W = \{(i_1, j_1), \cdots, (i_q, j_q)\}$ is an s - t walk if

1. $u_1 = s$

2.
$$v_i = u_{i+1}, \forall i = 1, ..., q-1$$

3.
$$u_q = t$$



$$\begin{split} W_1 &= \{(1,2),(2,5),(5,7)\}, \\ W_2 &= \{(1,2),(2,3),(3,4),(4,2),(2,5),(5,7)\}, \\ W_3 &= \{(1,3),(3,6),(6,5),(5,4),(4,6),(6,7)\} \\ \text{are all exmples of } 1-7 \text{ walks}. \end{split}$$

Definition (Path). An s - t path is an s - t walk without any repeated nodes.

In above example, W_1 is a 1-7 path while W_2 and W_3 are not.

Definition (Cycle). A cycle is path where its first and last nodes are same.

Definition (Tour). A tour is a cycle including all nodes of the graph.

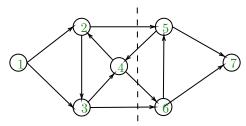
Definition (Acyclic graph). A graph without any cycles is acyclic.

Definition ().

- 1. Nodes $i \in N$ and $j \in N$ are said to be connected if there exists at least one path between i and j
- 2. A graph is said to be connected graph if every pair of its nodes are connected. Otherwise, the graph is called disconnected.

Definition (Cut). A cut is a partition of nodes into two subsets S and $\bar{S} = N \backslash S$.

- Each cut defines a set of links with one endpoint in S and another in \overline{S} . This set of links is denoted by (S, \overline{S}) .
- An s t cut is a cut (S, \overline{S}) with $s \in S$ and $t \in \overline{S}$. Example(s).



 $S=\{1,2,3,4\}, \bar{S}=\{5,6,7\},$ and $(S,\bar{S})=\{(2,5),(5,4),(4,6),(3,6)\}$ defines a 1-7 cut.

Definition (Tree). A tree is a connected graph that contains no cycles. Proposition

- 1. A tree on n nodes contains exactly n-1 links.
- 2. A tree has at least 2 leaf nodes (i.e., nodes with degree 1).
- 3. Every pair of nodes are connected by a unique path.

Proof.

- 1. (Proof by induction) Let P(n) be the statement that a tree on n nodes contains exactly n-1 links. P(1)=0 since there is only one node and a link requires at least two nodes. Let us assume that P(k) is true, i.e., a tree on k nodes contains exactly k-1 links. Then, we can add another node to this graph with one link and that would still be a tree with k links, which means that P(k+1) is true.
- 2. Assuming $n < \infty$, we prove this by contradiction. Assume that a tree on n nodes has only one leaf u. Then, find the longest path from u in the tree. The longest path cannot end at u because that is not a path but cycle. Let us assume that it ends at v. If v has degree 1 then we are done. If it has degree 2, then it is not a longest path.
- 3. Proof by induction. Not possible to add another node without creating a cycle.

Bipartite graphs

Definition (Bipartite graph). A graph G(N, A) is bipartite if we can partition N into two subsets N_1 and N_2 such that for every link $(i, j) \in A$, we have either $i \in N_1$ and $j \in N_2$ or $j \in N_1$ and $i \in N_2$.

Proposition

A graph G is bipartite if and only if every cycle in G contains an even number of links.

Proof.

 (\Rightarrow) Assume that G is bipartite. Then, every step of a walk will take you either from N_1 to N_2 or N_2 to N_1 . To form a cycle, you need to come back where you started requires even number of steps.

(\Leftarrow) Assume that every cycle in G is even. Then, starting from one node $u \in C_1$ along a path/cycle, put nodes at odd distance in C_2 and nodes at even distance in C_1 . Do this for every connected components of G. We cannot have link between two nodes within C_1 or C_2 , otherwise cycle will be odd.

Network representation

- The performance of a network algorithm depends not only on the algorithm but also on which data structure we use to store the network.
- We need to store how nodes are connected as well as capacities or costs associated to links.

Data structures

- 1. Node-link incidence matrix
- 2. Node-node adjacency matrix
- 3. Adjacency list
- 4. Forward (Backward) Star