
Traveling salesman problem

Pramesh Kumar

IIT Delhi

April 7, 2025

Suggested reading

▶ Goetschalckx Chapter 8

▶ Larson, R.C. and Odoni, A.R., 1981. Urban operations research
Chapter 6

2

https://web.mit.edu/urban_or_book/www/book/chapter6/6.4.html
https://web.mit.edu/urban_or_book/www/book/chapter6/6.4.html

Single vehicle round trip routing

Two classes of problems

▶ Node covering

▶ Edge covering

3

Edge covering: The Chinese Postman Problem (CPP)

Given a graph, find a minimum cost tour that visits each edge at least
once.

▶ Examples:

– Delivery of mail to residents
– Cleaning and sweeping of streets
– Plowing of snow after snowstorm
– Collection of refuse from houses
– Distribution of newspaper

▶ If only a subset of edges need to be visited, then the problem is
referred to as Rural Postman Problem (RPP)

4

History

The problem was first studied by Swiss mathematician Leonhard Euler in the 18th
century. Euler wanted to find a way in which a parade possession could cross all seven
bridges in Königsberg (now Kalingard on the river Pregel) exactly once. Euler proved
in 1736 that there is no solution to the problem.
Remark. The name CPP is derived from an early paper published in Chinese
Mathematics journal discussing the problem.

Figure: Königsberg bridge problem a

ahttps://www.lancaster.ac.uk/stor-i-
student-sites/harini-jayaraman/konigsberg-
bridge-problem-and-the-evolution-of-
mathematics/

Figure: Leonhard Euler

5

Definition (CPP). Given an undirected graph G(N,E) with known edge
costs c : E 7→ R, find a circuit that will traverse every edge of the graph
at least once and for which

∑
(i,j)∈E nijcij is minimum, where nij is the

number of times edge (i, j) ∈ E is traversed.

Definition (Euler tour). Given an undirected graph G(N,E), an Euler
tour is a circuit that will traverse every edge of the graph exactly once
(begin and end at the same node). An Euler path is a path which
traverses every edge of the graph exactly once.

6

Euler’s theorem

Theorem
A connected graph G possesses an Euler tour (Euler path) if and only if
G contains exactly zero (exactly two) nodes of odd degree.

Remark.

1. If a graph has Euler tour, clearly it is a solution to the CPP.

2. In case of digraphs, the indegree and outdegree of each node must
be equal for Euler tour to exist.

7

Examples

▶ Euler tour exists in the following graph.

1 2

34

▶ Euler path exist in the following graph. See exactly two nodes have
odd degree.

1 2
8

Examples

▶ Neither Euler tour nor Euler path exists in the following graph.

B

A

D

C

Figure: Königsberg bridge problem

9

Algorithm for finding the Euler tour

1. Start from any desired node s.

2. Traverse edges successively by keeping track of the route followed
and delete traversed edges. Avoid traversing any edge (also called
isthmus) whose deletion will disconnect the graph.

3. Continue until all edges are deleted and you come back to s. The
traversed route is Euler tour.

10

Example

a b c d

efgh

i j k l

mn

Euler tour: a-b-g-f-c-d-e-f-k-l-m-k-j-n-i-j-g-h-a

11

Chinese postman algorithm

1. Identify all the nodes with odd degree in G(N,A). Let m be the
number of odd degree nodes.1

2. Pair up all odd degree vertices, considering all possible combinations.

3. Identify the shortest path for all pairs. Select the pairings that result
in the shortest total distance for all paths combined.

4. For each pair, create new edges that are on the shortest path. After
this step, none of the nodes will have odd degree.

5. Find a Euler tour on the new graph. This Euler tour is an optimal
solution to CPP.

1Note that no. of odd degree nodes in an undirected graph are always even. Why?
because some of the degree of all nodes is even and if we remove the sum of degrees
of nodes with even degree, we are left with the sum of degrees of odd nodes which is
even.

12

Example

a b

c

de

5 5

55

8

6

8

6

The nodes a, b, d, e have odd degree. There are three possible pairings
of these nodes:

1. a - b and d - e: cost = 16

2. a - e and b - d: cost = 12

3. b - e and a - d: cost = 20
13

Example

a b

c

de

5 5

55

8

6

8

6

Figure: Pairing 1

a b

c

de

5 5

55

8

6

8

6

Figure: Pairing 2

a b

c

de

5 5

55

8

6

8

6

Figure: Pairing 3

The optimal matching is Pairing 2 with cost 12. Now find an Euler tour
in the given graph.

a-b-d-b-c-d-e-a-e-c-a: Total cost = 60 (48 of which is of original
graph and 12 units due to new edges). In other words, the edges a-e and
b-d will be traversed twice.
Remark. One can use Edmond’s algorithm for optimal pairing.

14

Node covering: The Traveling Salesman Problem (TSP)

Given a graph, find a minimum cost tour that visits each node at least once.

▶ Examples:

– Delivery of packages to houses
– Printed Circuit Board (PCB)
– Sequencing DNA fragments to reconstruct the original genome
– Routing of school bus

▶ It is possible to ask to visit only a subset of nodes.

Definition (Hamiltonian). A tour that visits all the nodes exactly once.

Definition (Asymmetric TSP). TSP problem defined on a graph in which the
cost between any two nodes (cities) i and j may not be the same as cost
between j and i.

Remark
TSP has been shown to belong to a class of computationally hard problems for
which it is difficult to find the exact solution for problems of even modest size.
Näıve solution: O(n!) and DP solution: O(n22n).

15

Euclidean TSP

Definition (Euclidean TSP). TSP problem defined on a graph whose edge
costs satisfy triangle inequality

cij ≤ cik + ckj ,∀i, j, k ∈ N (1)

Proposition (Larson and Odoni (1981))

▶ The optimum traveling salesman tour does not intersect itself.

▶ Let m of the |N | points in the Euclidean TSP define the convex hull
of the points. Then the order in which these m points appear in the
optimum traveling salesman tour must be the same as the order in
which these same points appear on the convex hull.

16

Asymmetric TSP

Given a set of cities N and cost of traveling from city i to city j denoted
as cij , find a tour that visits all the cities in minimum total travel cost.
Dantzig-Fulkerson-Johnson (DFJ)

formulation

xij =

{
1, if they go directly from i to j

0, otherwise

minimize
x

∑
i∈N

∑
j∈N

cijxij

subject to
∑

j∈N:j ̸=i

xij = 1, ∀i ∈ N

∑
i∈N:i̸=j

xij = 1, ∀j ∈ N

∑
i∈S

∑
j /∈S

xij ≥ 1, ∀S ⊂ N,S ̸= ϕ∗

xij = {0, 1}, ∀i ∈ N, ∀j ∈ N

Miller-Tucker-Zemlin (MTZ)
formulation

xij =

{
1, if they go directly from i to j

0, otherwise

ui = order in which city i is visited in the tour.

minimize
x,u

∑
i∈N

∑
j∈N

cijxij

subject to
∑

j∈N:j ̸=i

xij = 1, ∀i ∈ N

∑
i∈N:i̸=j

xij = 1, ∀j ∈ N

u1 = 1

2 ≤ ui ≤ n, ∀i ̸= 1

ui − uj + 1 ≤ (|N | − 1)(1 − xij)

∀i ̸= 1, ∀j ̸= 1

xij = {0, 1}, ∀i ∈ N, ∀j ∈ N

* One can replace these with
∑

i∈S,j∈S xij ≤ |S| − 1,∀S ⊂ N, |S| > 1
17

Subtour elimination constraints

Used for removing subtours
▶ Total number of such constraints = 2|N | − |N | − 2∑

i∈S

∑
j /∈S

xij ≥ 1,∀S ⊂ N,S ̸= ϕ

OR
∑

i∈S,j∈S

xij ≤ |S| − 1,∀S ⊂ N, |S| > 1

▶ Total number of new variables |N | and total number of constraints
= (|N | − 1) + (|N | − 1)2

2 ≤ ui ≤ n, ∀i ̸= 1

ui − uj + 1 ≤ (|N | − 1)(1− xij)

∀i ̸= 1,∀j ̸= 1

18

Formulation with alternative subtour elimination

constraints

▶ Based on item inventory.

▶ Salesman is assumed to start with |N | items and he leaves exactly
one item as he visits a city.

▶ Let qij is the item inventory carried out on edge (i, j)

▶ It creates |N |(|N | − 1) additional continuous variables and
(|N | − 1) + 2 + |N |(|N | − 1) = O(|N |2)

19

Formulation with alternative subtour elimination

minimize
x

∑
i∈N

∑
j∈N

cijxij

subject to
∑

j∈N :j ̸=i

xij = 1,∀i ∈ N

∑
i∈N :i ̸=j

xij = 1,∀j ∈ N

∑
k∈N

q1k = |N |∑
k∈N

qk1 = 1∑
i∈N

qij −
∑
k∈N

qjk = 1,∀j > 1

qij ≤ |N |xij ,∀i ∈ N, ∀j ∈ N : j ̸= i

xij = {0, 1}, qij ≥ 0,∀i ∈ N, ∀j ∈ N

20

Symmetric TSP

xij =

{
1, if they go directly from i to j

0, otherwise
Let n = |N |

minimize
x,u

n−1∑
i=1

n∑
j=i+1

cijxij

subject to

j−1∑
i=1

xij +

n∑
k=j+1

xjk = 2,∀j ∈ N

∑
i∈S

∑
j∈S:j>i

xij ≤ |S| − 1,∀S ⊂ N, |S| ≥ 2

xij = {0, 1},∀i ∈ N, ∀j ∈ N

21

Heuristics

22

Nearest neighbor heuristic
1: Input: Cities N , costs c
2: Output: Tour T and its cost cost(T)
3: procedure NearestNeighbor(N, c)
4: T ← ϕ; cost(T)←∞
5: for i ∈ N do
6: s← i ▷ Each starting point may output different tour
7: SE ← N\{i} ▷ Unexplored nodes

8: T
′
← {s}; cost(T

′
)←∞

9: while SE do
10: n← argminj∈SE{csj} ▷ Nearest neighbor

11: append n to T
′
;

12: cost(T
′
)← cost(T

′
) + csn

13: U ← U\{n}
14: s← n
15: end while
16: append i to T

′
; cost(T

′
)← cost(T

′
) + csi

17: if cost(T) > cost(T
′
) then

18: cost(T)← cost(T
′
)

19: T ← T
′

20: end if
21: end for
22: return T, cost(T)
23: end procedure

23

Greedy heuristic

▶ Select the edges in increasing order of their cost as long. Ties
broken arbitrarily.

▶ Avoid selecting edges that will result in a subtour and only two
edges associated to any node can be selected.

24

Sweep heuristic

▶ The algorithm starts by finding coordinates of the ”center”.

– xc = 0.5× (maxi xi +mini xi); yc = 0.5× (maxi yi +mini yi)

– xc =
∑|N|

i=1 xi; yc =
∑|N|

i=1 yi

▶ A ray is rotated around (xc, yc) and cities are added to the tour in
the sequence in which the ray traverses different cities.

▶ Ties are broken arbitrarily.

25

Savings heuristic

▶ Select starting city s. Let SE = N\{s} be the unexplored nodes.

▶ Find the pair of cities such that
p, q ← argmaxi∈U,j∈U{cis + csj − cij}. Add them to the tour.
Remove p, q from SE

▶ The next point is selected by finding the point with largest savings
to the current end points of the partial tour.

▶ Let p, q be the end points of the partial tour. Find h such that
h ∈ argmaxh′ {maxj=p,q{cjs + csh − cjh}}

▶ Continue while all points have been added to the tour.

26

Insertion heuristics

▶ In each iteration, they add an unexplored node to the partial tour
and decide between which pair of nodes (edge in the partial tour) to
add this node.

1. Cheapest insertion

min
k

{
min
i,j
{cik + ckj − cij}

}
2. Priciest insertion

max
k

{
min
i,j
{cik + ckj − cij}

}

27

Insertion heuristics

3. Nearest insertion It first finds a point to insert by finding the
unexplored point closest to any point on the partial tour. let T be
the partial tour.

min
k/∈T

{
min
j∈T

ckj

}
Then, it determines the best link to insert this point.

min
i,j∈T

{cik + ckj − cij}

4. Farthest insertion It first finds determines for every unexplored point
the smallest distance to any point on the partial tour. Then, it
inserts the unexplored point with maximum smallest distance to any
point on the tour. let T be the partial tour.

max
k/∈T

{
min
j∈T

ckj

}
Then, it determines the best link to insert this point.

min
i,j∈T

{cik + ckj − cij}

28

2-approximation algorithm for Euclidean TSP2

1. Find an MST T ∗ of G (complete graph) rooted at the first node.

2. Perform a pre-order traversal of T ∗ from the root. Let W be the list
of nodes in the order they are visited.

3. Scan each node one-by-one in T ∗ and delete all the occurrences
other than first occurrence of any node. Let C be the resulting
Hailtonian.

4. Return C as the approximate TSP tour.

2Finding an approximation algorithm for general TSP is NP-Hard
29

2-approximation algorithm for Euclidean TSP

Theorem
Let C∗ and C be optimal tour and approximate tour (given by above

algorithm) respectively. Then cost(C)
cost(C∗) ≤ 2.

Proof.
We know that the cost of MST T ∗ provides a LB on cost(C∗) (why because removing

any edge in cost(C∗) will give a spanning tree T
′
whose cost

cost(C∗) ≥ cost(T
′
) ≥ cost(T ∗)), i.e.,

cost(C∗) ≥ cost(T ∗) (2)

The walk (maybe using DFS) traverses every edge twice, therefore,

cost(W) = 2× cost(T ∗) (3)

Combining (2) and (3), we obtain

cost(W) ≤ 2× cost(C∗) (4)

Further,C is obtained by deleting the repeated nodes in W and connecting the nodes
directly. This operation will not increase the cost of W due to triangular inequality.
So, we have cost(C) ≤ cost(W ∗), together with (4), we prove that

cost(C) ≤ 2× cost(C∗)
30

Christofides’ 1.5-approximation algorithm for Euclidean

TSP

1. Find an MST T ∗ of G (complete graph) rooted at the first node.

2. Find the minimum weight perfect matching M of nodes with odd
degree in T ∗3. Let H = T ∗ ∪M . Note that there may be multiple
links between two nodes in H.

3. Find an Euler tour C
′
in H. Convert C

′
into TSP tour C by

skipping the repeated nodes (shortcutting) if any .

3Remember that the no. of odd degree nodes are even and the graph is complete.
31

Theorem
Let C∗ and C be optimal tour and approximate tour (given by the

Christofides’ algorithm) respectively. Then cost(C)
cost(C∗) ≤ 1.5.

Proof.
In step 3,

cost(C
′
) = cost(T ∗) + cost(M) (5)

since you traverse each edge only once in Euler tour. We know that
cost(T ∗) ≤ cost(C∗) (from (2)). Let O be the set of nodes with odd
degree that were matched by M . Generate two perfect matching M1 and
M2 using alternating edges. We know that cost(M) ≤ cost(M1) and
cost(M) ≤ cost(M2) (as they are not minimum weight matching).
Therefore,

cost(M) ≤ 1

2
(cost(M1) + cost(M2)) =

1

2

(
cost(CO)

)
where, CO is the hamiltonion cycle produced for set of nodes with odd
degree. Since O ⊂ N , we have cost(CO) ≤ cost(C∗). From (5),

cost(C) ≤ cost(C
′
) ≤ cost(C∗) +

1

2
cost(C∗) =

3

2
cost(C∗) (6) 32

Nicos Christofides invented his algorithm in 1976. For 44 years, there was
no improvement until recently when the approximation ratio was
improved to 1.5-ϵ for some ϵ > 10−36!

Figure: Nicos Christofides

33

Final thoughts

▶ There are many other heuristics for tour finding

▶ Branch-and-cut with heuristics is commonly used for solving it
exactly.

▶ I recommend the following resource for further study on TSP

– Applegate, David L., et al. ”The traveling salesman problem: a
computational study.” The Traveling Salesman Problem. Princeton
university press, 2011.

▶ Also the wonderful solver Concorde.

34

https://www.math.uwaterloo.ca/tsp/concorde/index.html

Thank you!

35

