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What is optimization?

(Merriam-Webster Dictionary) An act, process, or methodology of
making something (such as a design, system, or decision) as fully perfect,
functional, or effective as possible.
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Example 1

(Maximum Area Problem)
You have 80 meters of wire and want to enclose a rectangle as large as
possible (in area). How should you do it?
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Example 2

(Production Problem) A factory can produce two products, A and B. The
production of each item of A takes 2 hours, and that of item B takes 7
hours. Further, each item of products A and B takes 22 and 41 ft3

storage capacity, respectively. The manager gets a profit of $30 and $50
by producing each item of A and B resp. Assuming that there is an
88-hour limit on the number of hours of operating the factory and the
maximum storage capacity of the factory is 9,000ft3, how many items of
A and B should the manager decide to produce to maximize the profit?
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Common Framework

Components of an optimization problem

▶ Decisions

▶ Constraints

▶ Objective

Optimization seeks to choose some decisions to optimize (maximize or
minimize) an objective subject to certain constraints.
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Common Framework

Given f, gi, hi : Rn 7→ R

Z =minimize/maximize
x

f(x) (1a)

subject to gi(x) ≤ 0,∀i = 1, 2, ..., p (1b)

gj(x) ≥ 0,∀j = 1, 2, ..., q (1c)

hk(x) = 0,∀k = 1, 2, ..., r (1d)

▶ Decisions: x, Objective: f(x), and Constraints: (1b)-(1d)

▶ (1b), (1c), and (1d): set of ”≤”, ”≥”, and equality constraints

▶ X = {x ∈ Rn : (1b)− (1d)} define the feasible region.

▶ Any x̂ satisfying all the constraints is a feasible solution.

▶ Any x∗ ∈ X satisfying f(x∗) ≤ f(x),∀x ∈ X is an optimal solution.

▶ f(x∗) is known as optimal objective value.
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A few classes of optimization problems

▶ Linear optimization: f, gi, hi are all affine functions of continuous
variables x.

▶ Non-linear optimization: At least one of f, gi, hi is non-linear
function of continuous variables x.

– Convex optimization: All functions are convex and feasible region is
a convex set

▶ (Mixed) Integer optimization: Some of the variables x are restricted
to be integers.

▶ (Mixed) Integer Non-linear optimization: Some of the variables x are
restricted to be integers and at least one of f, gi, hi is non-linear.

Difficulty of solving above classes rises significantly as we go from above
to below.
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A few definitions

Definition (Maximum) Let S ⊆ R. We say that x is a maximum of S iff
x ∈ S and x ≥ y,∀y ∈ S.

Definition (Minimum) Let S ⊆ R. We say that x is a minimum of S iff
x ∈ S and x ≤ y,∀y ∈ S.

Definition (Bounds) Let S ⊆ R. We say that u is an upper bound of S iff
u ≥ x, ∀x ∈ S. Similarly, l is a lower bound of S iff l ≤ x, ∀x ∈ S.
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General Formulation of LP

Z =minimize/maximize
x

cTx (2a)

subject to aTi x ≤ bi,∀i ∈ C1 (2b)

aTj x ≥ bj ,∀j ∈ C2 (2c)

aTk x = bk,∀k ∈ C3 (2d)

xu ≥ 0,∀u ∈ N1 (2e)

xv ≤ 0,∀v ∈ N2 (2f)

xw free ,∀w ∈ N3 (2g)

where, C1, C2, C3 ⊆ {1, ...,m}, N1, N2, N3 ⊆ {1, ..., n}
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More definitions

Definition (Hyperplane) {x ∈ Rn : aTx = b}

Definition (Halfspace) {x ∈ Rn : aTx ≥ b}

Definition (Polyhedron) A set P ⊆ Rn is called a polyhedron if P is the
intersection of a finite number of halfspaces. P = {x ∈ Rn : Ax ≤ b}

Definition (Polytope) A bounded polyhedron is called a polytope.
Question Is {x ∈ Rn : Ax = b,x ≥ 0} a polyhedron?

Definition (Convex Sets) A set S ⊆ Rn is a convex set if for any
x,y ∈ S, and λ ∈ [0, 1], we have λx+ (1− λ)y ∈ S.
Question Is polyhedron P = {x ∈ Rn : Ax ≤ b} a convex set?

Definition (Convex combination) x ∈ Rn is said to be convex
combination of x1, ...,xp ∈ Rn if for λ1, ..., λp ≥ 0 s.t.

∑n
i λi = 1, x can

be expressed as x =
∑n

i λix
i.

Definition (Extreme point) Let P be a polyhedron. Then, x ∈ P is an
extreme point of P if we cannot express x as a convex combination of
other points in P .
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Theorem
Let P be a non-empty polyhedron. Consider LP max{cTx s.t. x ∈ P}.
Suppose the LP has at least one optimal solution and P has at least one
extreme point. Then, above LP has at least one extreme point of P that
is an optimal solution.
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Possible states of optimization problems

An optimization problem may have the following states:

▶ Infeasible (max problems, Z = −∞ and min problems, Z = +∞)

▶ Feasible, optimal value finite but not attainable

▶ Feasible, optimal value finite and attainable

▶ Feasible, but optimal value is unbounded (max problems, Z = +∞
and min problems, Z = −∞)
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Maximum flow problem

(Maximum flow problem) Given a directed graph G(N,A), cost of
traversing links c : A 7→ R, and capacities of links u : A 7→ R, find the
maximum flow possible to send from s ∈ N to t ∈ N .
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Minimum cost flow problem

(Minimum cost flow problem) Given a directed graph G(N,A), cost of
traversing links c : A 7→ R, lower and upper bounds (capacity) on the
flow on links l : A 7→ R and u : A 7→ R resp., and supply/demand at
each node b : N 7→ R, find the least cost shipment of a commodity. Note
b(i) > 0 for a supply nodes, b(i) < 0 for demand nodes, and b(i) = 0 for
transshipment nodes.
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Integer Problems
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Linear Integer Program

For c,x ∈ Rn, A ∈ Rm×n, and b ∈ Rm

Z =minimize
x

cTx (3a)

subject to Ax = b (3b)

xi ∈ Z+, i = 1, ..., p (3c)

xi ∈ R+, i = p+ 1, ..., n (3d)

▶ p decision variables are integers

▶ n− p decision variables are continuous

Examples 19



Binary Integer Program

Z =minimize
x

cTx (4a)

subject to Ax = b (4b)

xi ∈ {0, 1},∀i = 1, ..., n (4c)

▶ All decision variables can either take value 1 or 0.
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Example: Knapsack Problem

Given a set of items N , each with a weight wi and a value ai, determine
which items to include in the collection so that the total weight is less
than or equal to a given limit W and the total value is as large as
possible.

Let xi =

{
1 if i is picked

0 otherwise

Z =maximize
x

n∑
i=1

aixi (5a)

subject to
n∑

i=1

wixi ≤ W (5b)

xi ∈ {0, 1},∀i = 1, ..., n (5c)
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Example: Uncapacitated Facility Location

Given a set of potential depots N = {1, . . . , n} and a set
M = {1, . . . ,m} of clients, suppose there is a fixed cost fj associated
with the opening of depot j, and a transportation cost cij if all of client
i’s order is delivered from depot j. The problem is to decide which
depots to open and which depot serves each client so as to minimize the
sum of the fixed and transportation costs.

Let yj =

{
1 if depot j is opened

0 otherwise
xij =

{
1 if i’s order are served from depot j

0 otherwise

minimize
x,y

∑
j∈N

∑
i∈N

cijxij +
∑
j∈n

fjyj (6)

subject to
∑
j∈N

xij = 1,∀i ∈ M (7)

∑
i∈M

xij ≤ myj ,∀j ∈ N (8)

xij ≥ 0,∀i ∈ M,∀j ∈ N (9)

yj ∈ {0, 1},∀j ∈ N (10)

where, m is a large positive integer.
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First attempt to solving an integer program

Let’s relax the integral constraints and solve the linear program (which is
easy) and then find an integral solution closer to the optimal solution
(e.g., by rounding off) to the linear program.

▶ Such LP is called the LP relaxation of the integer program.

▶ It may work in some cases.

▶ In other cases, it may not even find a feasible solution, forget about
the optimal.
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Example

Integer Program

maximize
x1,x2

9x1 + 17x2

subject to 3x1 + 2x2 ≤ 11

3x2 ≤ 11

x1, x2 ∈ Z+

LP relaxation

maximize
x1,x2

9x1 + 17x2

subject to 3x1 + 2x2 ≤ 11

3x2 ≤ 11

x1 ≥ 0, x2 ≥ 0
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Example

Figure: The feasible region is shown using points and the objective function is
shown using dashed line
▶ The optimal solution of LP relaxation is (1.223, 3.667) with

objective value = 73.346.
▶ If we try to round it, we get (1, 4) which is not even a feasible

solution.
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Good news

Theorem
If the optimal solution to the LP relaxation is feasible to IP, then it must
be optimal to the IP.

Question. When does solving the LP relaxation gives integral solution?
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Totally unimodularity

Definition (Totally unimodular). A matrix A is totally unimodular (TU) if
every square sub-matrix of A has determinant 1, -1, or 0.

Theorem (Sufficient condition for TU)
Let A ∈ Zm×n. Then, A is TU if

1. Each entry in A, i.e., aij is 0, 1, or -1.

2. Each column of A has at most two non-zero entries.

3. There exists a partition (M1,M2) of the set of rows
M = {1, 2, · · · ,m} such that each column j containing two
non-zero entries satisfies

∑
i∈M1

aij −
∑

i∈M2
aij = 0.

Example(s). The incidence matrix of a directed graph is TU.
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Example

A =


−1 −1 0 0 0 1
1 0 −1 1 0 −1
0 1 1 0 1 0
0 0 0 1 1 0


Let M1 = {1, 2, 3} and M2 = {4}. Then∑

i∈M1

aij −
∑
i∈M2

aij = 0,∀j

.
Therefore, A is TU.
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Theorem (Hoffman and Kruskal’s Theorem)
Let A ∈ Zm×n. The polyhedron {x | Ax ≤ b,x ≥ 0} is integral for
every b ∈ Zm if and only if A is totally unimodular.

Remark. The common misconception is that the only way you can get
integral polyhedra if A is TU; not true.
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Solving IP

▶ Generally, solving IP is hard.

▶ There is no polynomial time algorithm to solve an IP.

▶ Modern solvers such as gurobi use branch-and-cut with other
techniques (preprocessing, etc.) to solve these.
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Thank you!
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